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Abstract
Stochasticity can play an important role in the dynamics of biologically 
relevant populations. These span a broad range of scales: from intra-cellular 
populations of molecules to population of cells and then to groups of plants, 
animals and people. Large deviations in stochastic population dynamics—
such as those determining population extinction, fixation or switching between 
different states—are presently in a focus of attention of statistical physicists. 
We review recent progress in applying different variants of dissipative 
WKB approximation (after Wentzel, Kramers and Brillouin) to this class of 
problems. The WKB approximation allows one to evaluate the mean time and/
or probability of population extinction, fixation and switches resulting from 
either intrinsic (demographic) noise, or a combination of the demographic 
noise and environmental variations, deterministic or random. We mostly 
cover well-mixed populations, single and multiple, but also briefly consider 
populations on heterogeneous networks and spatial populations. The spatial 
setting also allows one to study large fluctuations of the speed of biological 
invasions. Finally, we briefly discuss possible directions of future work.

Keywords: stochastic population dynamics, stochastic epidemic models, 
large deviations, population extinction and fixation, genetic switches, 
biological invasions, master equation, WKB methods

(Some figures may appear in colour only in the online journal)

1.  Introduction

It was realized long ago that stochasticity can play an important role in the dynamics of bio-
logically relevant populations. These span a broad range of scales: from intra-cellular popu-
lations of molecules to population of cells and then to groups of plants, animals and people 
[1–12]. The stochasticity, or noise may have different origins. Two main types of noise have 
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been identified: intrinsic, or demographic noise and extrinsic, or environmental noise. The 
demographic noise reflects natural ‘quantization’ of individuals the population is made of, and 
random character of elemental transitions such as births, deaths, interactions and movement 
of the individuals. Environmental variations (not necessarily stochastic) are usually described 
in terms of time-dependent elemental transition rates. If one ignores the noise, a steady-state 
population size corresponds to an attractor in the space of population sizes as described by a 
deterministic rate equation, or equations. Taking the stochasticity into account, one observes 
random excursions of the population sizes around the attractor. For established populations 
the typical excursions around the attractor are small. However, from time to time a rare large 
excursion occurs, which may lead to extinction of one of more populations, or to a population 
switch to the vicinity of another attractor. As a result, stochasticity can make deterministically 
stable attractors metastable. In such situations it is interesting, and often biologically impor-
tant, to determine the mean time to extinction or switch, when starting from the vicinity of an 
attractor. This review will mostly deal with problems of this type. We will confine ourselves to 
individual-based Markov population models and not consider continuum models of popula-
tion dynamics, based on Langevin-type equations, see e.g. [13]. The fact that typical fluctua-
tions are small implies the presence of a small parameter, usually coming from a disparity of 
the elemental transition rates. The WKB approximations—the focus of this review—utilize 
this small parameter in a smart way in order to approximately solve the master equation which 
is considered to be the exact model of the population dynamics. There are three recent reviews 
on closely related subjects. The review [14] on the WKB approximation in stochastic popu-
lation models was primarily intended for population biologists and ecologists, and it dealt 
only with extinction of well-mixed populations. The review [15] provided a comprehensive 
and pedagogic introduction to the path integral representation of master equations  and to 
approximate methods of solution. Finally, the review [16] is a survey of different mathemati-
cal methods of analysis of biological switching processes in a variety of systems, at both the 
genotypic and phenotypic levels.

In a well-mixed single population—the simplest paradigm of stochastic population dynam-
ics—the only generic type of attractor of the deterministic rate equation is a stable fixed point. 
As we will see, even in this simple situation there are two different scenarios of population 
extinction caused by demographic noise. Scenario A is observed in the absence of an Allee 
effect, when the population is monostable. Scenario B corresponds to bistability caused by an 
Allee effect. In the context of population switches due to a weak noise one always deals with 
bistability.

When there are two interacting populations (predator and prey, competition or symbiosis, 
susceptible and infected populations, etc), a generic attractor can be either a stable fixed point 
(a node or a focus), or a stable limit cycle, and we will review these cases separately. As the 
number of interacting populations increases, additional types of attractors may appear, includ-
ing chaotic attractors [17]. Noise-induced escape from chaotic attractors has been studied 
theoretically [18, 19] and experimentally [20] for continuous noisy systems, as described by 
Langevin equations, but not for stochastic populations.

The WKB (Wentzel–Kramers–Brillouin) approximation is best known to physicists in the 
context of quantum mechanics. In the time-dependent WKB theory a WKB ansatz leads to 
an approximate description of the time-dependent wave function as described by the non-sta-
tionary Schrödinger equation: for example, for a (quasi-classical) quantum particle in a time-
dependent potential, see [21], chapter III, section 17. In its turn, the stationary WKB theory 
can be used for approximate calculations of the eigenvalues and eigenfunctions corresponding 
to highly excited states as described by the stationary Schrödinger equation, for evaluating the 
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(small) probability of tunneling through a potential barrier, and for other purposes, see chapter 
VII of [21]. Similarly, there are time-dependent and stationary versions of the WKB approx
imation in stochastic problems as we will see below.

For stochastic classical systems with a continuous space of states a WKB theory was devel-
oped by Freidlin and Wentzel [22], Dykman [23] and Graham [24]. As populations are natu-
rally ‘quantized’—they have an integer number of individuals—the WKB approximation here 
has some important differences. As of present, there are two main strategies of applying the 
WKB approximation to stochastic populations. In the more straightforward ‘real-space’ WKB 
method (where by ‘real space’ is actually meant the space of population sizes) one applies a 
WKB ansatz directly to the master equation, or to the equation describing the stationary or 
quasi-stationary distribution [25–57]. In the ‘momentum space’ WKB method one first derives 
an exact evolution equation—a linear partial differential equation (PDE)—for the probability 
generating function. For example, for a well-mixed single population the probability generat-
ing function is defined as [58, 59]

G( p, t) =
∞∑

n=0

pnPn(t),� (1)

where Pn(t) is the probability of observing n individuals at time t and p is an auxiliary vari-
able. Then one applies a WKB ansatz to the evolution equation for G(p, t) or to the stationary 
equation describing the eigenstates of G(p, t) [60–70]. For established populations a small 
parameter required for the WKB approximation is 1/N, where N � 1 is a typical population 
size characterizing the (quasi)stationary distribution. In well-mixed single populations each 
of the two WKB methods, in combination with additional perturbation techniques, using the 
same small parameter 1/N, yields accurate and controllable results, in the leading and sublead-
ing orders of N, for the mean time to extinction/switch. Even the leading-order WKB results, 
which miss pre-exponential factors, are usually much more accurate than the results obtained 
with the more traditional ‘diffusion approximation’ based on the van Kampen system-size 
expansion [5]. Indeed, as was shown in many studies [30, 60, 62, 63, 71, 72], the mean time 
to extinction/switch, obtained with the diffusion approximation, usually involves an error that 
is exponentially large in N.

For multiple populations, even the leading-order results for the mean time to extinction/
switch are, in general, unavailable in analytical form. Still, the WKB method proves very use-
ful here, as it yields, albeit in a numerical form, the optimal path: a special trajectory of the 
system in the phase space of population sizes and the conjugate momenta that gives a domi-
nant contribution to the specified large deviation such as extinction or switch. In its turn, the 
mean time to extinction/switch is given (again, in a numerical form) by the ‘classical action’ 
evaluated along the optimal path. In this class of problems analytical progress is possible if, 
besides N, there is an additional small parameter in the system, coming from an additional 
disparity in the elemental transition rates [31, 34, 38, 47, 65, 73].

As we already mentioned, environmental/extrinsic variations are usually taken into account 
by allowing some of the elemental transition rates to vary with time. In some cases these vari-
ations are deterministic: describing seasonality of births and deaths, ‘catastrophes’ and other 
effects in population biology, and vaccination in epidemiology. In other cases the variations 
can be viewed as stochastic, reflecting multiple concurrent mechanisms. In the leading order 
of the WKB approximation these problems are similar to multi-population problems. Here too 
the WKB theory yields the optimal path of the population to the specified large deviation [50, 
64, 66, 67, 74–76] and, for a stochastic rate variation, the optimal realization of the environ
mental noise that gives a dominant contribution to this large deviation [50, 74, 75].
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When the number of interacting sub-populations increases, their topological heterogeneity 
becomes very important in determining the large deviation properties. This is a largely unex-
plored subject, and we will review some recent work in this direction [77].

Introducing migration of populations in space (traditionally modeled as random walk of 
the individuals) makes the large deviation problems both richer and more difficult. Here the 
WKB method, once applicable, provides a convenient classical-field-theory framework for 
studying large deviations: from population extinction [60, 78] to large velocity fluctuations of 
biological invasion fronts [79–81].

In the last few years the WKB approximation in stochastic population dynamics has been 
adopted by a growing number of practitioners. This review (which may have a natural bias 
toward our own work) does not attempt to cover all of them.

2.  Extinction, fixation and switching in established single populations

In this section we will briefly review the two WKB methods—the real-space and the momen-
tum-space—on several examples of escape from a long-lived metastable state corresponding 
to an established well-mixed single population. The elemental transitions do not need to be 
single-step: they can involve transitions between a state with n individuals and a state with 
n  +  r individuals, where r = ±1,±2, . . .. These transitions occur with the rate Wr(n), so the 
master equation reads

dPn(t)
dt

=
∑

r

[Wr(n − r)Pn−r(t)− Wr(n)Pn(t)] ,� (2)

where Pk<0  =  0.
Typically, there are two escape routes, or escape scenarios, from a metastable state of a 

single population [35]. Let us denote the attracting fixed point, in the vicinity of which the 
population resides, by n*. In escape scenario A there exist one or two adjacent repelling fixed 
points of the deterministic rate equation that are also absorbing states of the stochastic dynam-
ics. A single repelling point n  =  nu  =  0 corresponds to extinction; two repelling points cor-
respond to fixation, see figure 1.

In escape scenario B, in addition to the repelling point nu  >  0, which is now non-absorb-
ing, there exists a second attracting fixed point of the deterministic rate equation, n  =  ns, see 
figure 2. If ns  =  0 and absorbing, this is extinction. If ns  >  0 and non-absorbing, this is switch-
ing from n* to ns. Each of the scenarios A and B can be dealt with by the real-space WKB 
approach, while the momentum-space approach is limited to scenario A [68].

Figure 1.  Scenario A. The full circle denotes an attracting fixed point of the deterministic 
rate equation, the full square denotes an absorbing state of the stochastic process. Left 
panel: extinction. Right panel: fixation.

Figure 2.  Scenario B. The full circle denotes an attracting fixed point, the full square 
denotes an absorbing state, and the empty circle denotes a repelling fixed point. Left 
panel: extinction. Right panel: switching.
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Let us derive a general approximate expression for the mean time to escape. After a short 
relaxation time tr, determined by the deterministic rate equation, the population gets estab-
lished as a long-lived metastable distribution peaked near n  =  n*. The metastable distribution 
very slowly decays in time because of the probability ‘leakage’ into the absorbing state(s). 
The long-time decay is characterized by the lowest positive eigenvalue 1/τ  of the master 
equation (2), so that τ � tr. That is, at times t � tr , one has [27, 30, 32, 33, 35]

Pn>0(t � tr) � πne−t/τ , P0(t � tr) � 1 − e−t/τ .� (3)

Here we have assumed for concreteness a single absorbing state at n  =  0, corresponding 
to extinction. The case of fixation will be dealt with shortly. The function πn  (n = 1, 2, . . .) 
describes the quasi-stationary distribution (QSD) of the population. For metastable popula-
tions the decay time τ is an accurate approximation to the mean time to extinction (MTE) or 
fixation. Using equation (3), one arrives at an eigenvalue problem for the QSD πn , n = 1, 2 . . .:

∑
r

[Wr(n − r)πn−r − Wr(n)πn] = −πn/τ .� (4)

At large N the eigenvalue 1/τ  is exponentially small, see below. Therefore, the term in the 
right hand side of equation (4) can be neglected, and we arrive at a quasi-stationary equation

∑
r

[Wr(n − r)πn−r − Wr(n)πn] = 0, n = 1, 2, . . . .� (5)

Once the QSD is known, we can plug equation (3) into equation (2) for n  =  0, and obtain the 
MTE from the relation

1/τ =
∑
r>0

Wr(r)πr.� (6)

Equation (6) holds for both scenarios A and B. The QSD itself, however, is scenario-depen-
dent, and this ultimately determines the MTE τ. In the following we will derive the expres-
sions for the QSD for each of the two escape scenarios.

2.1.  Extinction and fixation: scenario A

In section  2.1.1 we will determine the QSD in the case of extinction via scenario A. 
Section 2.1.2 will deal with fixation.

2.1.1.  Extinction.  We will illustrate some general results, that we will present shortly, on a 
typical example: a variant of the stochastic Verhulst model [82] with the (rescaled) birth and 
death rates

W+1(n) = Bn, W−1(n) = n + B
n2

N
, N � 1.� (7)

The quadratic corrections account for competition for resources. For this model, the master 
equation (2) is

dPn(t)
dt

= W+1(n − 1)Pn−1(t) + W−1(n + 1)Pn+1(t)− [W+1(n) + W−1(n)]Pn(t),

dP0(t)
dt

= W−1(1)P1(t).
�

(8)
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The deterministic rate equation can be obtained by multiplying both sides of equation (8) by n 
and summing over all n’s. Using the mean-field assumption 〈n2〉 = 〈n〉2 , this procedure yields 
[58, 59]

˙̄n = (B − 1)n̄ − B
n̄2

N
,� (9)

where n̄ denotes the mean population size. This equation (that also emerges from the WKB 
formalism) has two fixed points: at n̄ = nu = 0 and at n̄ = n∗ = N(B − 1)/B. We will assume 
that B  >  1, so these fixed points are repelling and attracting, respectively. As a result, for 
B  >  1 the population size will flow to the attracting fixed point at n* when starting from any 
nonzero value of n at t  =  0. The metastable population distribution is peaked at about n  =  n*, 
whereas the repelling fixed point n  =  0 is an absorbing state of the stochastic process.

Let us determine the QSD by using the real-space WKB method. To this end we express the 
QSD in terms of the rescaled population size q  =  n/N and look for the solution of equation (5) 
at n � 1 by making the WKB ansatz [27, 30, 32, 33, 35]

πn ≡ π(q) � Ae−NS(q)−S1(q)−...,� (10)

where S(q) and S1(q) are assumed to be O(1), and a constant prefactor A is introduced for 
convenience. The leading-order calculations, where one neglects S1, are straightforward as 
we show shortly. The sub-leading order calculations demand some effort. This is because the 
subleading WKB solution for the QSD has to be complemented by a recursive solution of the 
master equation in the vicinity of the absorbing state. In the case of extinction the sublead-
ing WKB solution has to be matched with a recursive solution valid at n  =  O(1) [30, 35], see 
below.

We plug the WKB ansatz (10) into equation (5) and, assuming n � 1, Taylor-expand the 
functions of q ± 1/N  around q. In the leading and subleading orders we obtain

S(q) =
∫ q

pa(q)dq, S1(q) =
1
2
ln[w+(q)w−(q)].� (11)

Here w+(q) = W+(n)/N = Bq and w−(q) = W−(n)/N = q(1 + Bq) are the rescaled trans
ition rates, see equation (7). Furthermore, pa(q) = ln[w−(q)/w+(q)] = ln[(1 + Bq)/B] is the 
so called fast-mode WKB solution [35], see figure 3. This solution describes the optimal path: 
the nontrivial zero-energy trajectory of the effective classical Hamiltonian

H(q, p) = w+(q) (e p − 1) + w−(q)
(
e−p − 1

)
,� (12)

where p = dS/dq is the momentum. The constant A in equation (10) can be found by normal-
izing the QSD in the vicinity of the attracting fixed point q∗ = n∗/N = 1 − 1/B, where the 
QSD can be approximated by a Gaussian. This yields

A =

√
S′′(q∗)
2πN

eNS(q∗)+S1(q∗).� (13)

(Note that there is an additional, slow-mode WKB solution [35] for which S(q)  =  0 and 
S1(q) = ln[w+(q)− w−(q)]. In scenario A this solution gives a negligible contribution in the 
entire WKB region, so it should be discarded. In scenario B, however, this solution plays an 
important role, see below.) Plugging equations (11) and (13) into equation (10), we obtain the 
WKB approximation for the QSD for the Verhulst model [35]:

πn = π(q) =
B − 1√

2πNBq2(1 + Bq)
e−NS(q),� (14)

J. Phys. A: Math. Theor. 50 (2017) 263001
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where

S(q) = 1 − 1
B
− q +

(
q +

1
B

)
ln

(
q +

1
B

)
.� (15)

The action function S(q) is depicted in figure 4.
The approximation (14) and (15) is invalid at n  =  O(1), or q  =  O(1/N  ). Here one has to 

solve the quasi-stationary master equation recursively. Fortunately, one can neglect the non-
linear terms in the transition rates [30, 35]. The recursive solution is

πn =
(Bn − 1)
τ(B − 1)n

,� (16)

where τ is the MTE we are after. Matching this recursive solution with the WKB solution (14) 
in their joint region of validity 1 � n �

√
N  and using equations (6) and (15), we find [35]

τ =

√
2πB
N

1
(B − 1)2 exp

[
N
B
(B − 1 − lnB)

]
≡

√
2πB
N

1
(B − 1)2 eNS(0).

� (17)
As expected, τ is exponentially large in N. As one can clearly see now, the leading-order WKB 
action S(q) plays the role of (and sometimes called) the non-equilibrium potential. It describes 
an effective exponential barrier to extinction. The pre-exponential factor is important in this 
case, as it includes the large parameter N−1/2. The presence of a large parameter in the pre-
exponent is a typical feature of the extinction scenario A. Figure 5 shows a comparison of 
the mean extinction rate 1/τ  from equation (17) with the mean extinction rate measured in 
Monte-Carlo simulations at different N � 1. Very good agreement is observed.

Close to the transcritical bifurcation of the deterministic rate equation, δ ≡ B − 1 � 1, but 
still at Nδ2 � 1, equation (17) simplifies to

τ �
√

2π
N

eNδ2/2

δ2 .� (18)

Figure 3.  Extinction scenarios A and B. Left panel: scenario A (no Allee effect): the 
repelling fixed point ̄n = 0 is an absorbing state of the stochastic process. The stochastic 
extinction occurs via a large fluctuation which brings the established population from a 
vicinity of the attracting fixed point n̄ = n∗ directly to the absorbing state n  =  0. Right 
panel: scenario B (Allee effect): the absorbing state at n  =  0 is an attracting fixed point. 
The stochastic extinction occurs via a large fluctuation which brings the established 
population from a vicinity of the next attracting fixed point n̄ = n∗ to a vicinity of the 
repelling fixed point n̄ = nu. From there the population size flows ‘downhill’ to the 
absorbing state n  =  0 almost deterministically. The thick curves show the corresponding 
optimal paths p  =  p(q). Reprinted figure with permission from [35], copyright 2015 by 
the American Physical Society.
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This close-to-the-bifurcation result is universal: it applies to a whole class of population mod-
els that do not include an Allee effect [35].

Now, continuing using the Verhulst model as an example, we will show that the often used 
van-Kampen system size expansion (also called the diffusion approximation) generally yields 
an error in the MTE that is exponentially large in N [30, 60, 62, 63, 71, 72]. The van-Kampen 
system size expansion approximates the exact master equation (8) by a Fokker–Planck equa-
tion. The Fokker–Planck equation can be obtained from equation (8) in the following way. 
One defines j±(n) = W±1(n)Pn(t), and Taylor expands j±(n ∓ 1) around n up to the sec-
ond order. Then, introducing the rescaled population size q  =  n/N, one arrives at the Fokker–
Planck equation

∂P(q, t)
∂t

= − ∂

∂q
[v(q)P(q, t)] +

1
N

∂2

∂q2 [d(q)P(q, t)] .� (19)

Figure 4.  The action function S(q) for the Verhulst model, given by equation (15), for 
B  =  1.5. Here q*  =  1  −  1/B  =  1/3.

Figure 5.  The mean extinction rate τ−1 versus N on a semi-log scale for B  =  2. Line: 
theoretical result (17), symbols: results of Monte-Carlo simulations.

J. Phys. A: Math. Theor. 50 (2017) 263001
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Here

v(q) = w+(q)− w−(q) = q(B − 1 − Bq)

is the deterministic drift velocity, and

d(q) = w+(q) + w−(q) = q(B + 1 + Bq)

is the diffusivity that describes an effective multiplicative noise. Now we continue exploit-
ing the large parameter N � 1. We make the ansatz P(q, t) = π(q)e−t/τ and use the WKB 
approximation, see equation (10), to analyze the quasi-stationary equation for π(q). This pro-
cedure yields, in the leading order in N, a Hamilton–Jacobi equation  H(q, dS/dq) = 0 with 
the Hamiltonian

H(q, p) = p
[

v(q) +
d(q) p

2

]
.� (20)

The resulting action function is

SFP(q) = −
∫ q

q∗

2v(q′)

d(q′)
dq′ = 2

[
q − 1 +

1
B
− 2 ln

(1 + B + Bq)
2B

]
.� (21)

This expression (which is then multiplied by a large N inside the exponent of the MTE) dif-
fers from the asymptotically exact expression (15) thus invalidating the Fokker–Planck equa-
tion as a controlled approximation for the purpose of dealing with large deviations.

The van-Kampen system size expansion may become accurate close to bifurcation points 
of the deterministic model. In our Verhulst example, the bifurcation is at B  =  1. At B − 1 � 1, 
the stable fixed point is q∗ � B − 1 � 1. Therefore we can expand v(q) and d(q) in the vicin-
ity of q  =  0, which yields

H � pq
[

v′(0) +
v′′(0)

2
q +

d′(0)
2

p
]
� pq(B − 1 − q + p).� (22)

As one can check, this Hamiltonian coincides with the asymptotically exact WKB Hamiltonian 
(12) close to the bifurcation at B  =  1. Naturally, the zero-energy activation trajectory,

p(q) = −2v′(0) + qv′′(0)
d′(0)

= q + 1 − B,� (23)

is also the same as the one following from the Hamiltonian (12), and SFP(0) is given by 
(1/2)(B  −  1)2, which coincides with the exponential term in equation  (18). Performing the 
subleading-order calculations, one arrives at a pre-exponent which also coincides with that of 
equation (18) (see [35] for details).

We now present, using the same example of the Verhulst model, the momentum-space 
WKB method. Multiplying both sides of the master equation (8) by pn and summing over all p 
one arrives at an exact evolution equation for the probability generating function G( p, t) from 
equation (1):

∂G
∂t

= ( p − 1)
{[

Bp −
(

1 +
B
N

)]
∂G
∂p

− Bp
N

∂2G
∂p2

}
.� (24)

One way of using the WKB approximation would be to look for the time-dependent solu-
tion as G( p, t) = exp[−S( p, t)] and neglecting, in the leading WKB order, the second deriva-
tive ∂2

pS [60]. This would suffice if we limit ourselves to the leading WKB order. For more 
accurate calculations, that yield pre-exponents, it is convenient to first exploit the known 
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spectral properties of the metastability problem [61–63, 68]. Indeed, the metastable solu-
tion, corresponding to the established population whose distribution is sharply peaked around 
n*  =  N(1  −  1/B), is described by the lowest excited eigenmode φ( p) of the differential opera-
tor in the right hand side of equation (24): the mode that decays with the rate 1/τ ,

G( p, t) = 1 − φ( p)e−t/τ .� (25)

At t → ∞ one obtains G(p, t)  =  1, corresponding to population extinction, Pn(t → ∞) = δn,0. 
We plug the ansatz (25) into equation (24) and arrive at an ordinary differential equation (ODE) 
for φ( p):

( p − 1)
{[

Bp −
(

1 +
B
N

)]
φ′( p)− Bp

N
φ′′( p)

}
=

φ

τ
,� (26)

where the prime denotes the derivative with respect to the argument. The probability conser-
vation yields G(1, t)  =  1 (see equation (1)), therefore φ(1) = 0. Analyticity of φ( p) in the 
vicinity of p  =  0 brings about an additional condition:

(
1 +

B
N

)
φ′(0)− φ(0)

τ
= 0

which, in view of the expected exponential smallness of 1/τ , can be replaced by φ′(0) = 0. The 
‘self-generated’ boundary conditions φ′(0) = φ(1) = 0 define the natural interval 0 � p � 1 
on which the boundary value problem for equation (26) should be considered [61–63, 68]. 
In order to find the MTE, we can consider two separate regions and match the asymptotic 
solutions in their joint region of validity. In the bulk—that is, not too close to p  =  1—we can 
assume that φ( p) is almost constant, and look for a perturbative solution

φ( p) = 1 + δφ( p), δφ( p) � 1.� (27)

Plugging this ansatz into equation (26), and defining u( p) = φ′( p), the perturbative solution 
in the bulk can be written as

ub( p) =
N

Bτp
e−NS( p)

∫ p

0

eNS( p)

p − 1
dp,� (28)

where S( p) = (1/B) ln p − p + 1, and the boundary condition u(0)  =  0 is satisfied.
In the boundary-layer region 1 − p � 1 we notice that φ( p) rapidly falls from a value 

close to unity to zero over a narrow region of size O(N−1/2) � 1. In the boundary layer, the 
approximate ODE reads

[
Bp −

(
1 +

B
N

)]
u( p)− Bp

N
u′( p) = 0.� (29)

Here we look for a WKB-type solution u( p) = a( p)e−NS( p) where S( p ) is the action 
in the momentum space, and a( p ) is an amplitude. Plugging this ansatz in equation  (29), 
we demand that the terms cancel each other separately in the zeroth and first order in 1/N. 
What is the boundary condition for u( p ) at p  =  1? At times t � τ  we have, on the one hand, 
∂pG( p = 1, t) = n∗ = N(B − 1)/B and, on the other hand, ∂pG( p = 1, t) = −u(1), so 
u(1)  =  −n*. As a result, the boundary-layer solution is

ubl( p) = −n∗
p

e−NS( p).� (30)
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The solutions to φ( p) and u( p ) are illustrated in figure 6.
In order to find the MTE τ, one can match the bulk solution (28) and the boundary-

layer solution (30) in their joint region of validity N−1/2 � 1 − p � 1 [61–63, 68]. For 
1 − p � N−1/2 , the integral in the bulk solution (28) can be evaluated by a saddle-point 
approximation, where the saddle point is found at p  =  1/B. This gives

∫ p

0

eNS( p)

p − 1
dp � −

√
2πB
N

e−NS(1/B)

B − 1
.� (31)

Plugging this into equation  (28) and matching with equation  (30) we again arrive at 
equation (17).

Notice that, although the boundary-layer solution (30) has a recognizable WKB form, the 
actual use of the WKB approximation here was unnecessary. The only approximation used 
was to linearize equation (26), that is to replace φ( p) by 1 in the right hand side and neglect 
the exponentially small term τ−1. This is a typical situation for the elemental transitions lead-
ing to a second-order ODE for φ( p), like equation (26). Yet, already for third-order ODEs 
(such as the one that appears, for example, when one of the transitions is triple annihilation 
3A → ∅), the WKB approximation becomes indispensable [68].

2.1.2.  Fixation.  Consider a population consisting of n mutants of type A and N  −  n wild-type 
individuals of type B, which can be genes, cells or even animals. What is the probability that 
the mutants take over (fixate) the entire population, causing the extinction of the wild-type 
individuals? This question can be addressed in the framework of evolutionary game theory 
(EGT) which allows to describe how successful strategies spread by imitation or reproduction 
[83].

In its simplest form, the EGT framework includes two reactions A + B → A + A at a rate 
fA, and A + B → B + B, at a rate fB. Here, an individual chosen proportionally to its fitness 
(reproduction potential) produces an identical offspring which replaces a randomly chosen 
individual, and fA and fB denote the fitness of types A and B, respectively. If, in addition, the 
fitness of A and B depends on the current number of mutants, the deterministic rate equation—
the replicator dynamics [83]—describing the mean number of mutants, can be written as

Figure 6.  An illustration of the function φ( p) in the region of interest p ∈ [0, 1]. The 
boundary layer is schematically denoted by the region bounded by the vertical dashed 
lines. The inset shows u( p) = φ′( p).
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ṅ = n(N − n)[ fA(n)− fB(n)].� (32)

The simplest form of fA and fB, which guarantees an intermediate coexistence state, is when 
fA(n)− fB(n) ∼ n∗ − n, corresponding to the linear Moran model [84]. This yields an attract-
ing point at n  =  n* and two repelling fixed points: at n  =  0 and n  =  N.

The stochastic version of this model is described by the master equation

dPn(t)
dt

= W+1(n − 1)Pn−1(t) + W−1(n + 1)Pn+1(t)− [W+1(n) + W−1(n)]Pn(t),
� (33)

where W+1(n) = n(N − n) fA(n) and W−1(n) = n(N − n) fB(n) [36, 37, 46, 83]. The stochas-
tic dynamics of this problem resemble those of the Verhulst model. After a short relaxation 
time tr, the system enters a long-lived metastable coexistence state centered about n*. Here, 
however, the system can escape to either the absorbing state n  =  0 corresponding to extinction 
of the mutants, or to n  =  N corresponding to fixation of the mutants. As a result, the dynamics 
of the probability distribution function at t � tr  satisfy the ansatz [36, 37, 40, 46]

P1�n�N−1 = πne−t/τ , P0(t) = ϕ(1 − e−t/τ ), PN(t) = (1 − ϕ)(1 − e−t/τ ),
� (34)

where the mean time to fixation (of either the wild type or the mutants), τ, and the probability 
of mutant extinction, ϕ, satisfy

ϕ = W−1(1)π1τ , τ = [W−1π1 + W+1(N − 1)πN−1]
−1.� (35)

The solution of this problem can be found using the real-space WKB approach, and follows 
the same lines as the solution presented above for extinction. As before, the WKB solution 
breaks down close to the boundaries n  =  0 and n  =  N, where one has to use recursive solu-
tions by linearizing the reaction rates close to n  =  0, and n  =  N, respectively; see [36, 37, 40].

The scenario we have presented above contains wild-type individuals and those having 
a single mutation. However, there exist more complicated scenarios of fixation with multi-
ple mutations, when e.g. a beneficial mutation (with a higher fitness than the wild type’s) is 
obtained from a wild-type species by going through a detrimental mutation (with a lower fit-
ness than the wild type’s). Such problems, which include in their simplest form a two-locus 
genotype space, and in which the negative effects of two single mutations are overcompen-
sated by a higher-fitness double mutant, can also be dealt with by using the real-space WKB 
approach, see e.g. [85].

2.2.  Extinction and switching: scenario B

We will now consider escape scenario B, see figure 2. In section 2.2.1 we will study extinc-
tion (n  =  ns  =  0 is absorbing), whereas section 2.2.2 will deal with switching between two 
metastable states (n  =  ns is non-absorbing).

2.2.1.  Extinction.  Following [35], we use the following set of reactions: binary reproduction 
2A λ→ 3A, the reverse transition 3A σ→ 2A, and linear decay A

µ→∅. Here

W1 =
λn(n − 1)

2
, W−1 = µn +

σn(n − 1)(n − 2)
6

.� (36)

The deterministic rate equation is [35]

˙̄n =
λ

2
n2 − µn − σ

6
n3.� (37)
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The fixed point at n  =  0 is now attracting. Furthermore, denoting by δ2 = 1 − 8σµ/(3λ2) > 0,  
and  N = 3λ/(2σ), equation  (37) has two additional fixed points nu = N(1 − δ) and 
n∗ = N(1 + δ). An established stochastic population resides in the vicinity of the fixed point 
n*. This simple model accounts for the Allee effect that refers to a variety of processes that 
reduce the per-capita growth rate at small population densities. The Allee effect has been long 
known in ecology and population biology [86]. Very recently, its importance has been also 
appreciated in mathematical cancer biology [87].

In contrast to scenario A, where the WKB solution is determined solely by the non-trivial 
zero energy trajectory (the fast mode), the WKB solution in scenario B includes two modes. 
The fast-mode WKB solution dominates at n  >  nu (but not too close to nu), whereas the slow-
mode WKB solution (see below) dominates at 0  <  n  <  nu (again, not too close to n  =  nu) [32, 
33, 35] , see figure 3. Moreover, because the slow-mode solution diverges at n  =  nu, one has 
to go beyond the WKB approximation in a boundary layer |n − nu| � nu where the fast and 
slow WKB modes are strongly coupled. Fortunately, in this boundary layer the quasi-station-
ary master equation can be approximated by a quasi-stationary Fokker–Planck equation [32, 
33, 35]. As a result, the QSD at n � 1 involves three distinct asymptotes which need to be 
matched with one another. Finally, at n  =  O(1), where the WKB approximation breaks down, 
a recursive solution for the QSD can be found by neglecting the non-linear terms in the master 
equation [35]. The recursive solution, however, is only needed if one wants to determine the 
MTE in a straightforward manner, by using equation  (6). There is, however, an important 
shortcut which does not require the small-n recursive solution [33]. This is because the meta-
stable distribution develops a constant probability current toward small n. It is this current that 
determines the escape rate from the metastable state n  =  n*. One can determine this current 
in a close vicinity of n  =  nu, without the need to address the region of n  =  O(1). The resulting 
calculations yield a general expression for the MTE [35], which turns out to be the same as 
the mean time to switch [33], and even as the mean time to population explosion if the attract-
ing fixed point is at n = ∞ [32]. In our example of the three reactions with an Allee effect the 
resulting MTE is the following:

τ =
π(1 − δ)

µδ
eN∆S, ∆S = 2

(
δ −

√
1 − δ2 arctan

δ√
1 − δ2

)
.� (38)

As in scenario A, τ is exponentially large in N. Now, however, the pre-exponential factor is 
independent of N. In figure 7 one can see a comparison between the theoretical formula (38) 
and numerical Monte-Carlo simulations, and excellent agreement is observed.

Close to the saddle-node bifurcation of the deterministic rate equation, δ � 1, but still at 
Nδ3 � 1, equation (38) becomes [33, 35]

τ =
π

µδ
exp

(
2
3

Nδ3
)

.� (39)

Equation (39) can be also obtained from a Fokker–Planck equation, and it is universally appli-
cable to a whole class of well-mixed single-population models that have a very strong Allee 
effect. This result also holds for a whole class of continuous stochastic systems [23].

2.2.2.  Switching.  The difference between switching and extinction is that, in the case of 
switching, the target state, corresponding to the second attracting point ns, is non-absorbing. 
As explained in the previous section, the mean time to escape in scenario B does not depend 
on the exact nature of the target state. Still, for the sake of completeness, we will briefly show 
how to evaluate the mean switching time using, as an example, a genetic switch.
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We will consider a gene regulatory network that displays a deterministically bistable 
behavior. Gene regulatory networks are responsible for regulating the production of proteins. 
During gene expression a DNA segment—the gene—is transcribed into an mRNA molecule 
which is then translated into a protein. This process is often regulated via transcription factors 
(which are also proteins) that can bind to the DNA promoter site and affect the mRNA tran-
scription rate, and thereby the protein translation rate. Here control of the mRNA transcrip-
tion is done by either recruiting or blocking RNA polymerase—an enzyme that performs the 
transcription of genetic information from DNA to RNA [88].

In some cases the dynamics of the transcription factor, that controls a specific protein, are 
strongly affected by the protein itself, so there is feedback. A positive feedback can give rise 
to a bistable behavior, which has been shown to occur e.g. in the lac operon circuit [89, 90] 
and also in the context of competence in Bacillus subtilis [91]. Bistability can also occur if 
two different proteins negatively regulate each other, see e.g. [45, 88, 92–95]. Such feedback-
based genetic switches are abundant in cell biology. They regulate diverse decision-making 
processes such as microbial environmental adaptation, developmental pathways and nutrient 
homeostasis, see [89] and references therein. In such systems it has been shown that the life-
time of these different gene-expression states (phenotypes) is determined by stochastic fluc-
tuations of mRNA and proteins during gene expression that can yield spontaneous switching, 
even in the absence of a deterministic signal [43, 96].

We will consider a simple genetic switch in which the protein of interest positively 
regulates the transcription of the mRNA molecule that is responsible for its own pro-
duction, giving rise to a positive feedback loop [43, 51, 90, 96]. In many situations the 
lifetime of the mRNA is short compared to that of the protein [97]. Here one can make 
the simplifying assumption that the mRNA species instantaneously equilibrates, and the 
switching time depends solely on the protein dynamics. (We will revisit this assumption 
in section  7.1.7 where we will explicitly consider the mRNA dynamics as well.) This 
gives rise to the so-called ‘self-regulating gene’ which is a protein-only model. In this 
model the protein’s production rate is given by a function f(n) which depends on the cur
rent protein number n, while degradation, mainly due to cell division, occurs at a rate n 
[50]. Here time is measured in cell cycle units.

Figure 7.  The mean extinction rate τ−1 versus δ on a semi-log scale. Line: theoretical 
result (38). Symbols: results of a numerical solution of the master equation set for N  =  200 
and µ = 1. Reprinted figure with permission from [35], copyright 2015 by the American  
Physical Society.
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When positive feedback is at play, the function f (n) increases with a growing protein num-
ber. A widely used positive-feedback function is the Hill function [89, 98]

f (n) = a0 + (a1 − a0)
nh

nh + nh
0

,� (40)

where h is the Hill exponent, a0 is the baseline production rate, n0 is its midpoint, and the pro-
duction rate saturates at a1 at n → ∞. For h � 2 the deterministic rate equation for the mean 
number of proteins,

ṅ = f (n)− n� (41)

can give rise to bistability. In the bistable case, the rate equation admits (at least) three fixed 
points: a lower attracting point n*, an intermediate repelling point nu, and a higher attracting 
point at ns. In cellular biology the attracting fixed points represent ‘off’ and ‘on’ phenotypes, 
in which the cell produces a low/high number of proteins, respectively. When stochasticity is 
accounted for, one observes noise-driven switching between the two phenotypic states, each 
of which now becoming metastable.

The stochastic description of the self-regulating gene is given in terms of the master 
equation

dPn(t)
dt

= f (n − 1)Pn−1(t) + (n + 1)Pn+1(t)− [ f (n) + n]Pn(t).� (42)

What is the mean switching time (MST) to the on state n  =  ns when starting from the vicinity of 
the off state n  =  n*? As usual, we first determine the QSD πn  via the ansatz Pn<nu(t) = πne−t/τ , 
where τ is the MST, and employ the WKB ansatz (10) [33, 50]. In the leading order, this gives 
rise to a Hamilton–Jacobi equation H(q, dS/dq) = 0, where

H(q, p) = f̃ (q) (e p − 1) + q
(
e−p − 1

)
� (43)

is the Hamiltonian, f̃ (q) = f (n)/N , q  =  n/N is the rescaled protein concentration, and N is 
the typical protein population size. As a result, the MST in the leading order, τ ∼ eN∆S, is 
given by

∆S =

∫ qu

q∗
ln[q/f̃ (q)]dq.� (44)

As the target state ns is not absorbing, there is actually a backward probability current towards 
n*. However, when starting from the vicinity of the off state n  =  n*, and at intermediate times 
tr � t � τ , the backward current is exponentially small compared to the forward current, and 
therefore, does not affect the MST [33, 35].

As discussed above, the subleading-order corrections to the MST can be calculated by 
matching the fast-mode WKB solution with a boundary-layer solution valid in the vicinity of 
nu, and subsequently, matching the boundary-layer solution to the slow-mode WKB solution. 
This allows the calculation of the probability current through the repelling point and subse-
quently the MST [33, 35].

3.  Extinction conditioned on non-establishment

In this section we consider a failure of establishment. The question we are asking is the follow-
ing: What is the probability that a population, with initial population size n0 � 1, goes extinct 
before it gets established at an attracting fixed point n*? This probability is exponentially small 
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and amenable to a WKB treatment. Here too there are two extinction scenarios: A and B. We 
will consider scenario A in some detail on the example of the Verhulst model with W±1(n) 
given by equation (7). The repelling fixed point n  =  0 is an absorbing state of our stochastic 
process. In order to answer the question we have posed, we declare the attracting fixed point 
n  =  n* absorbing, and find the probability of reaching n  =  0 rather than n  =  n*. Let us denote 
by Pn this conditional extinction probability starting from n individuals. We can write the fol-
lowing recursive equation [58]:

Pn =
W+1(n)

W+1(n) + W−1(n)
Pn+1 +

W−1(n)
W+1(n) + W−1(n)

Pn−1.� (45)

This equation  follows from the observation that the probability of extinction starting from 
n individuals equals the sum of the probability of extinction starting from n  +  1 individuals 
multiplied by the probability to reach state n  +  1 and the probability of extinction starting 
from n  −  1 individuals multiplied by the probability to reach state n  −  1 [58]. The boundary 
conditions for Pn are P0 = 1 and Pn∗ = 0. Equation (45) can be rewritten as

W+1(n)Rn − W−1(n)Rn−1 = 0,� (46)

where Rn = Pn+1 − Pn. The ensuing single-step problem is in fact exactly solvable, see e.g. 
[58]. This is not so, however, in more complicated situations, where multi-step transitions 
are present. Therefore, we employ a WKB approximation and sketch the leading-order WKB 
solution. The WKB ansatz is Rn ≡ R(q) = A1e−NS(q), q  =  n/N, and A1 is a constant. Plugging 
it into equation (46) [36, 37] we arrive, in the leading order, at the problem of finding the non-
trivial zero energy trajectory, generated by the Hamiltonian

H(q, p) = w+1(q)− w−1(q)e p,� (47)

where w±(q) = W±(n)/N , and p = S ′(q) is the momentum. The solution is 
p(q) = ln[w+1(q)/w−1(q)], and therefore R(q) = A1e−NS(q), where

S(q) =
∫ 0

q
p(q)dq = −q + q ln

(
1
B
+ q

)
+

1
B
ln (1 + Bq) .� (48)

The approximation we have made is valid at n � 1, or q � N−1, and N � 1. As a result, we 
obtain

Pn = A2 +

n−1∑
m=0

Rm � A2 + NA1

∫ q

0
R(q)dq,� (49)

where we have replaced the sum by an integral. A1 and A2 are constants which can be found 
using the boundary conditions P0 = 1 and Pn∗ = 0, and we obtain

Pn �
∫ q∗

q e−NS(q′)dq′∫ q∗
0 e−NS(q′)dq′

.� (50)

As N � 1, the integrals in the numerator and denominator can be evaluated by Taylor-
expanding S(q′) around the lower boundaries q and 0, respectively. Then, putting n = n0 < n∗, 
we arrive at the final result [36, 37]

Pn0 � C(q0)e−NS(q0),� (51)

where q0 = n0/N , C(q0) = A3S ′(0)/S ′(q0), and A3 is an additional pre-factor that we will 
not present here. It comes from two sources. The first is the subleading WKB term S1(q). The 
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second is the boundary correction term in the Euler–Maclaurin formula of replacing a sum by 
an integral, that we neglected in equation (49).

The optimal path to extinction conditioned on non-establishment can be also found by 
solving a modified problem where a reflecting wall is put at n = n0 < n∗ so that the population 
cannot have more than n0 individuals. In the latter case the population cannot reach the meta-
stable state at n*. The pre-exponential factors in these two problems are, however, different.

In scenario B there are three fixed points of the deterministic theory: the attracting points 
n  =  0 and n  =  n* and a repelling point n  =  nu. Starting from n = n0 > nu, one is interested in 
the probability of extinction prior to reaching the established state at n*. By similar arguments, 
the leading-order WKB result is

Pn0 � C(q0)e−N[S(qu)−S(q0)],� (52)

where C(q0) is a preexponential factor which can be calculated.

4.  Bursty reactions

Sometimes production or death of individuals occurs in ‘bursts’ of random size. This happens, 
for example, in living cells. When the life-time of mRNA molecules is short compared to the 
cell cycle, proteins are synthesized in geometrically-distributed bursts, see e.g. [97]. This fact 
alters protein statistics and may drastically decrease switching times between different phe-
notypic states [43]. Additional examples include bursty viral production from infected cells, 
see e.g. [99], and variations in the number of offspring in animals, which has been shown to 
decrease the extinction risk [100].

We will illustrate the problem of bursty reactions by considering a modification of the 
Verhulst model, presented above. (A similar approach can be taken to treat the problem of 
bursty influx, or arrival in groups, see [69].) The microscopic dynamics are defined by the 
following ensemble of reactions and their corresponding rates [70]

A
BnD(k)/〈k〉−→ A + kA, A

n+Bn2/N−→ ∅.� (53)

Here, N � 1 is the typical population size, B � 1 is the average reproduction rate, and 
k = 0, 1, 2, . . . is the offspring number per birth event, which is sampled from a normalized 
burst size distribution D(k) with the first and second moments denoted by 〈k〉, and 〈k2〉, 
respectively.

In this case the master equation reads

Ṗn =
B
〈k〉

[
n−1∑
k=0

D(k)(n − k)Pn−k −
∞∑

k=0

D(k)nPn

]

+ (n + 1)
[

1 +
B(n + 1)

N

]
Pn+1 − n

[
1 +

Bn
N

]
Pn,

�

(54)

whereas the deterministic rate equation coincides with equation (9). The long-lived metastable 
state is peaked about the attracting fixed point n*  =  N(1  −  1/B), and our aim is to calculate the 
MTE. The WKB machinery leads to H  =  0, with Hamiltonian [70]

H(q, p) = (1 − e−p)Bq [e pF( p)− 1/B − q] ,� (55)
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where

F( p) =
∑∞

k=0 ekpD(k)− 1
〈k〉(e p − 1)

.� (56)

When D(k) is specified, the activation trajectory pa(q) can be found explicitly. Having 
found pa(q), one can show that the QSD’s variance satisfies σ2 = N[1 + F′(0)], where 
F′(0) = (1/2)(〈k2〉/〈k〉 − 1). The MTE can be evaluated as [70]

τ ∼ eN∆S, ∆S =
pa(0)

B
−
∫ pa(0)

0
e pF( p)dp.� (57)

Finding the subleading correction by the real-space WKB method would require match-
ing of the subleading-order WKB solution with a recursive solution at n = O(1). It turns 
out, however, that the method of calculating the recursive solution by linearizing the reaction 
rates in the vicinity of n = O(1) breaks down in the presence of bursty reproduction [70]. 
Fortunately, the momentum-space approach comes to rescue. Here, as in section 2.1.1, we can 
match the bulk solution and the boundary-layer solution in their joint region of validity, see 
figure 6. This yields the MTE including the pre-exponential factor [70]:

τ =
1

(B − 1)(e−pf − 1)

√
2π

Nq′
a( pf )

eN∆S,� (58)

where qa( p) = e pF( p)− 1/B is the zero-energy solution of the Hamiltonian (55), pf is the 
root of the equation qa( pf ) = 0, and ∆S is given by equation (57). Figure 8 shows comparisons 
between the analytical and numerical results for τ for four different burst size distributions.

Close to the transcritical bifurcation of the deterministic rate equation, δ ≡ B − 1 � 1, but 
still at Nδ2 � 1, equation (58) simplifies to

τ �
√

2π[1 + F′(0)]√
Nδ2

exp

{
Nδ2

2[1 + F′(0)]

}
.� (59)

Let us compare this result with equation (18) for the MTE of the ‘standard’ Verhulst model. 
As F′(0) > 0, equation (59) shows that bursty reproduction can reduce the MTE by an expo-
nentially large factor [70].

Bursty deaths, where a random number of individuals dies (for example, due to compe-
tition), can be treated in a similar manner. Overall, bursty reactions can either increase or 
decrease the probability of rare events to occur compared to the non-bursty reactions [101].

5.  Which stationary WKB method is better?

The stationary real-space and momentum-space WKB methods, in conjunction with addi-
tional approximations employing the same large parameter N � 1, yield accurate large-devi-
ation results for a broad class of problems of single stochastic populations. Such accuracy is 
impossible to achieve with the more traditional van Kampen system size expansion which 
approximates the exact master equation by a Fokker–Planck equation and, as a result, usually 
holds only for typical fluctuations. How does the momentum-space WKB method compare 
with the real-space WKB method? From our experience, every problem with ‘non-bursty’ 
reactions, which includes a large parameter N � 1 and can be approximately solved with 
the momentum-space WKB, can also be approximately solved with the real-space WKB, and 
these approximate results coincide. For populations exhibiting escape scenario B (the Allee 
effect), the momentum space representation encounters significant difficulties [68].
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On the other hand, for problems exhibiting bursty reactions, the momentum-space approach 
is, as of today, the only method that enables one to calculate the preexponential corrections, 
see section 4 and [69, 70]. In this case even the leading-order WKB calculations are more 
conveniently done with the momentum-space approach. Here the master equation, which con-
tains an infinite sum corresponding to the infinite reaction ensemble, transforms into a single 
evolution equation for the probability generating function, G(p, t), where the bursty nature 
of the reactions is manifested by a nontrivial p-dependence of this equation. By contrast, the 
Hamiltonian obtained via the real-space approach contains an infinite number of terms, which 
makes theory more complicated [69, 70].

6.  Extinction due to demographic noise and environmental variations

6.1.  Periodic modulation of the environment

A periodic rate modulation can greatly reduce the MTE. The authors of [64, 66] studied this 
effect on the prototypical example of the branching-annihilation process A → 2A and 2A → ∅. 
The transition 2A → ∅ can be viewed as an extreme variant of competition when two competi-
tors are both killed upon encounter. The transition rate coefficients of the branching and anni-
hilation processes are λ and µ0, respectively. Let λ oscillate with time, λ = λ0(1 + ε cosωt), 
so as to describe e.g. seasonal effects. The master equation reads, for n � 1,

Figure 8.  MTE for different burst size distributions as a function of their 
characteristic parameter: (a) K-step reproduction (KSR) D(k) = δk,K ; (b) Poisson 
(PS) D(k) = λke−λ/k!; (c) geometric (GE) D(k) = (1/(1 + b)) (b/(1 + b)) k; (d) 
negative-binomial (NB) D(k) = (k + a − 1)!/(k!(a − 1)!) (1/(1 + b)) a (b/(1 + b)) k . 
The solid lines denote theoretical results given by equation (58), the (°), (�), (�) and 
(�) markers denote results of Monte-Carlo simulations, while the (x) marker denotes 
the theoretical value for the single-step case with D(k) = δk,1. Parameters are a  =  2, 
B  =  2, and N  =  150. Reproduced from [70], © SISSA Medialab Srl.  Reproduced by 
permission of IOP Publishing.  All rights reserved.
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dPn(t)
dt

=
µ0

2
[(n + 2)(n + 1)Pn+2(t)− n(n − 1)Pn(t)] + λ(t) [(n − 1)Pn−1(t)− nPn(t)] .
� (60)

Using this equation, one obtains the following exact evolution equation for G(p, t):

∂G
∂t

=
µ0

2
(1 − p2)

∂2G
∂p2 + λ(t) p( p − 1)

∂G
∂p

.� (61)

In the absence of modulation, ε = 0, the MTE is the following [30, 63, 102]:

τ � 2
√
πµ1/2

λ
3/2
0

e
2λ0
µ (1−ln 2) =

2
√
π

µN3/2 e2N(1−ln 2),� (62)

where N = λ0/µ � 1. This result (which includes an important pre-exponential factor) was 
obtained by three different methods, among them the real-space WKB method in the leading 
and subleading WKB order [30]. For the time-periodic λ, such a high accuracy can only be 
achieved in the limit when the modulation frequency is very low, see below. In other regimes 
one settles for the leading-order WKB accuracy. Let us use the non-stationary WKB ansatz in 
the momentum space G( p, t) = exp[−S( p, t)] (here and in section 6.2 we absorb N in the defi-
nition of S). Defining q = ∂S/∂p, neglecting ∂2S/∂p2  and shifting the momentum, p → p − 1, 
we arrive at an effective one-dimensional classical mechanics with the Hamiltonian

H(q, p) =
[
λ(t)(1 + p)− µ

2
(2 + p)q

]
qp� (63)

that explicitly depends on time. This mechanical problem is in general not solvable analyti-
cally. Two existing numerical algorithms will be briefly reviewed in section 7.1.1. Analytical 
progress requires additional approximations, based on additional small parameters. Assaf et al 
[66] used three such approximations.

6.1.1.  Weak modulation: linear theory.  At sufficiently small, but not too small, ε, the relatively 
small, but important correction to the action is linear with respect to ε, and can be calculated 
perturbatively within the WKB approximation. We split the Hamiltonian into two terms:

H(q, p, t) = H0(q, p) + εH1(q, p, t),� (64)

where

H0(q, p) = λ0(1 + p) pq − µ0

2
(2 + p) pq2,� (65)

and

H1(q, p, t) = λ0(1 + p) pq cosωt.� (66)

For the unperturbed Hamiltonian H0(q, p) the ‘extinction instanton’—the heteroclinic trajec-
tory MF of figure 9—is [63]

q = q0( p) =
2N(1 + p)
(2 + p)

.� (67)

One can find explicit formulas for q(t) and p(t):

q0(t − t0) =
2N

2 + eλ(t−t0)
, p0(t − t0) = − 1

1 + e−λ(t−t0)
,� (68)
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where t0 is an arbitrary time shift. Using equation (67), we obtain the unperturbed action S0 
along the instanton,

S0 = −
∫ −1

0
q0( p) dp = 2N(1 − ln 2)� (69)

which yields the expression in the exponent of equation (62).
A small correction to the action ∆S can be evaluated from [66]

∆S = min
t0

{
−ε

∫ ∞

−∞
H1 [q0(t − t0), p0(t − t0), t] dt

}
,� (70)

where the integration is performed along the unperturbed instanton (68). After the integration 
over time and minimization over t0, the perturbed action S = S0 +∆S satisfies

S
S0

= 1 +
∆S
S0

� 1 − πε

(1 − ln 2) sinh(πα)

{
[sin(α ln 2)− α]

2
+ [cos(α ln 2)− 1]2

}1/2
,

� (71)
where α = ω/λ0. The maximum effect of the rate modulation is obtained at α → 0. Recall 
that the perturbed action yields (in the leading order in N ) minus the natural logarithm of the 
MTE.

The minimization over t0 reflects an important effect of synchronization between the opti-
mal path of the population to extinction and the periodic rate modulation. The synchronization 
lifts the degeneracy of the unperturbed instanton with respect to an arbitrary time shift present 
in equation (68). Synchronization of this nature was also observed in large deviations of con-
tinuous stochastic systems subject to a parameter modulation [103, 104].

6.1.2.  Fast modulation: the Kapitsa’s pendulum.  In the the high-frequency limit, ω � λ0, the 
system resembles the Kapitsa’s pendulum [105]: a rigid pendulum with a rapidly vibrating 
pivot. Here one can also calculate an important correction to the unperturbed action. Because 
of the high modulation frequency, this correction is small even if ε is of order 1. To determine 
this correction Assaf et al [66] developed a Hamiltonian version of the asymptotic method for 
the Kapitsa’s pendulum [105]. As a first step, one calculates small high-frequency corrections 

Figure 9.  The phase plane of the unperturbed Hamiltonian (65). The solid lines denote 
zero-energy trajectories. Reprinted figure with permission from [66], copyright 2015 by 
the American Physical Society.
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to the unperturbed ‘coordinate’ and ‘momentum’ of the system. Using these corrections, one 
then constructs a canonical transformation which, by means of a time averaging (essentially, 
by rectifying the high-frequency component of the motion), transforms the original time-
dependent Hamiltonian into an effective time-independent Hamiltonian. The effective Ham-
iltonian includes a correction coming from the rectified high-frequency perturbation. Finally, 
one finds the perturbed instanton, emerging from this effective time-independent Hamiltonian, 
and evaluates the action along this instanton. The action along the effective instanton turns 
out to be [66]

S
S0

� 1 − Kε2

α2 ,� (72)

where

K =
6 ln 2 − 49/12

1 − ln 2
= 0.2462 . . . .

6.1.3.  Slow modulation: adiabatic approximation.  When the modulation period 2π/ω  is 
much longer than the characteristic relaxation time of the system tr = 1/λ0 but much shorter 
than the expected MTE, the extinction probability as a function of time can be written, at long 
times, as [66]

P0(t) � 1 − e−
∫ t

0 rext(t) dt.� (73)

Here rext(t) = rext[λ = λ(t)] is the instantaneous value of the slowly time-dependent extinc-
tion rate. It is obtained by replacing λ0 in equation (62) by λ(t) = λ0(1 + ε cosωt). The aver-
age, or effective extinction rate ̄rext during a sufficiently long time T is defined via the relation

P0(T) = 1 − e−r̄extT .� (74)

Comparing equations (73) and (74), we obtain for our periodic rate modulation

r̄ext =
2π
ω

∫ 2π/ω

0
rext(t) dt =

N3/2

4π3/2

∫ 2π

0
(1 + ε cos τ)3/2e−S0(1+ε cos τ)dτ .

�

(75)

The MTE is equal, in the adiabatic approximation, to 1/r̄ext. In [66] the integral over τ in 
equation (75) was evaluated analytically in two limits. For |ε|N � 1, a saddle point evaluation 
yields

r̄ext =
N(1 − |ε|)3/2

4π
√

|ε|(1 − ln 2)
e−S0(1−|ε|).� (76)

The leading term S0(1 − |ε|) coincides with the zero-frequency limit of the linear theory, 
as can be seen from equation (71) for α → 0. The physical meaning of this term is evident: 
by virtue of the adiabatically slow rate modulation, the ‘activation barrier’ to extinction 
S0(1 − |ε|) is determined simply by the minimum value of λ(t) = λ0(1 + ε cosωt) which 
is equal to λ0(1 − |ε|). It is not surprising, therefore, that the same leading order result also 
follows from the leading-order WKB theory [66]. However, equation (76) also includes an 
important prefactor missed by the leading-order WKB. Notice that this prefactor scales as N, 
not as N3/2 as observed without modulation, see equation (62).

In the opposite limit, |ε|N � 1, the integral (75) can be calculated via a Taylor expansion 
of the integrand in εN [66].
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The non-perturbative regime can only be studied numerically. The existing numerical 
methods are essentially the same as for multi-population problems, and we postpone their 
brief discussion until section 7.1.1. Here we only show, in figure 10, two examples of extinc-
tion instantons in this system, found numerically in [66]. A schematic ‘phase diagram’ of the 
system, on the plane (ε,α = ω/λ0), is shown in figure 11.

6.2.  Catastrophic events

A catastrophic event in population dynamics can be modeled by a strong temporary decrease 
of the population birth rate, or increase of the death rate. How can one evaluate P0(t)—the 
probability that the population goes extinct by time t—at the time when the catastrophic event 
is over, and the environmental conditions return to normal? As shown in [67], a catastrophe 
can lead to an exponentially large increase ∆P0 in the extinction probability P0(t) compared 
to the extinction probability without the catastrophe, see figure 12. This increase ∆P0 can be 
evaluated using the WKB approximation.

The authors of [67] considered the Verhulst model with the birth and death rates given by 
equation (7). The catastrophic event was modeled by introducing a time-dependent factor f(t), 
so that f (±∞) = 1, into the birth rate:

W+1(n, t) = Bf (t)n.� (77)

The evolution equation for the probability generating function can be written as ∂G/∂t = ĤG, 
with the operator

Ĥ =
B
N

(1 − p) p
∂2

∂p2 + ( p − 1) [Bf (t)p − 1]
∂

∂p
.� (78)

Figure 10.  Projections on the (q, p) plane of instantons of the Hamiltonian (63), found 
numerically via the shooting method, for two sets of parameters (the dashed lines). Here q is 
measured in units of N, α = 1, and ε = 0.6 such that S/N = 0.467 in (a) and ε = 0.9 such that 
S/N = 0.398 in (b). The solid line denotes the unperturbed instanton, whose unperturbed 
action is S0/N = 2(1 − ln 2) � 0.614. Reprinted figure with permission from [66],  
copyright 2015 by the American Physical Society.
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Similarly to the problem of rate modulation considered in the previous section, the non-sta-
tionary WKB ansatz in the momentum space leads, in the leading order, to a one-dimensional 
classical Hamiltonian flow with the time-dependent Hamiltonian

H( p, q, t) = p
[
−B

N
( p + 1)q + Bf (t)( p + 1)− 1

]
q,� (79)

where the new momentum p is shifted by 1, p − 1 → p. Because of the explicit time depend
ence of the Hamiltonian, only numerical solution is in general available. One analytically 
solvable case is when the reproduction rate drops instantaneously (for simplicity, to zero) 
at t  =  0 and recovers to the pre-catastrophe value, again instantaneously, after time T has 
elapsed:

f (t) =

{
1 if t < 0 or t > T ,
0 if 0 < t < T .

� (80)

Because of the special shape of f(t), there are now two distinct Hamiltonians to consider: the 
unperturbed Hamiltonian (equation (79) with f(t)  =  1) before and after the catastrophe and the 
zero-birth-rate Hamiltonian during the catastrophe:

Hc( p, q) = −p
[

B
N
( p + 1)q + 1

]
q.� (81)

Each of the two Hamiltonians is an integral of motion on the corresponding time interval. The 
instanton can be found by matching three separate trajectory segments: the pre-catastrophe, 
catastrophe and post-catastrophe segments. Figure 13 shows a projection of the instanton on 
the (p, q) plane. The instanton must exit, at t = −∞, the deterministic fixed point M and enter, 

Figure 11.  Schematic phase diagram of different extinction regimes in the parameter 
plane (ε,α = ω/λ0) of the branching-annihilation process with modulation of 
the branching rate. Either the linear theory, or the hamiltonian Kapitza’s method is 
applicable well to the left of and above the dash-dotted line, and well to the right 
of the dashed line. The position of the solid line is calculated in [66]. The adiabatic 
approximation holds well below the dotted line. The horizontal size of the non-eikonal 
(that is, non-WKB) regions at α → 0 is of order 1/N, where N = λ0/µ � 1. There is 
no analytic theory as of today in the non-perturbative regime. Reprinted figure with 
permission from [66], copyright 2015 by the American Physical Society.
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at t = ∞, the fluctuational fixed point F. The matching conditions at times t  =  0 and t  =  T 
are provided by the continuity of the functions q(t) and p(t). The pre- and post-catastrophe 
segments must have a zero energy, E  =  0, so they are parts of the original zero-energy trajec-
tory of the unperturbed problem, q0( p )  =  N  −  N/[B(1  +  p)]. For the catastrophe segment, 
qc( p ), however, the energy E  =  Ec is non-zero and a priori unknown. It can be found from the 
demand that the duration of this segment be T [67].

The solution simplifies considerably at B − 1 � 1, that is close to the bifurcation point of 
the model. In this limit the pre- and post-catastrophe Hamiltonian reduces to the ‘universal’ 
Hamiltonian

H( p, q) = p
(
− q

N
+ p + B − 1

)
q,� (82)

introduced in [106]. Furthermore, the zero-birth-rate Hamiltonian during the catastrophe sim-
plifies dramatically:

Hc( p, q) � −pq.� (83)

After some algebra, see [67], one obtains

S(T) � 2S0

1 + eT ,� (84)

where

S0 � N(B − 1)2

2
,� (85)

is the action of the ‘universal’ model in the absence of a catastrophe. The increase ∆P0 of the 
extinction probability due to the catastrophe is  ∼exp[−S(T)]. As one can see, for a prolonged 
catastrophe, T � 1, the increase of the extinction probability becomes very large.

Figure 12.  A schematic plot of the time-dependent extinction probability P0(t), showing 
the effect of a catastrophe with characteristic duration T. The increase of the extinction 
probability ∆P0 can be evaluated using the WKB approximation. Reprinted figure with 
permission from [67], copyright 2015 by the American Physical Society.
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6.3.  Environmental noise

Multiple and concurrent environmental factors that affect the birth or death rates of popula-
tions can be modeled as a rate modulation by noise. Early population biology models assumed 
that the environmental noise is white, that is delta-correlated in time [107, 108]. More recent 
studies focused on the effect of temporal autocorrelation, or color, of the environmental noise 
on the population extinction, see e.g. [14] for a review. WKB theories of population extinction 
driven by an interplay of demographic and environmental noise in the absence of an Allee 
effect and in the presence of it were developed in [74] and [75], respectively. Kamenev et al 
[74] considered a symmetrized Verhulst model with the birth and death rates

λn =
n
2
(µ+ r − an), µn =

n
2
(µ− r + an), r < µ,

� (86)
where there is no Allee effect. Levine and Meerson [75] considered the set of reactions 
2A → 3A, 3A → 2A and A → ∅, that we dealt with in section 2.2.1, in the parameter region 
corresponding to a strong Allee effect. In both papers the environmental noise was introduced 
via a modulation of a parameter entering the reaction rates. In [74] the constant parameter r 
was replaced by r − ξ(t), where ξ(t) is a ‘red’ (that is, positively correlated) Gaussian random 
process—the Ornstein–Uhlenbeck noise [58]—with zero mean, variance v � µ2 and correla-
tion time tc. The same type of noise was adopted in [75]. Both papers assumed a regime of 
parameters close to the bifurcation (transcritical and saddle-node, respectively) of the corre
sponding deterministic equations. In these cases the master equation  for the evolution of 
the population size distribution without environmental noise can be well approximated by a 
Fokker–Planck equation. The latter is equivalent to a Langevin equation, so that the environ
mental noise ξ(t) can be conveniently introduced in the birth-death term [75]. Importantly, the 
Ornstein–Uhlenbeck noise ξ(t) obeys a Langevin equation of its own,

Figure 13.  Projection on the (p, q) plane of the ‘extinction instanton’ (the thick solid 
line going from M to F) for the catastrophic event described by equations (77) and (80). 
Points p1 and p2 correspond to times t  =  0 and t  =  T where the catastrophic event begins 
and ends, respectively. At t  <  0 and t  >  T the instanton follows the unperturbed zero-
energy heteroclinic trajectory q  =  q0( p ), whereas at 0  <  t  <  T it follows a trajectory 
with a nonzero energy which depends on the duration T of the catastrophe. The increase 
∆P0 of the extinction probability due to the catastrophe is  ∼exp[−S(T)], where S(T ) is 
area of the shaded region. Reprinted figure with permission from [67], copyright 2015 
by the American Physical Society.
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ξ̇(t) = −ξ(t)
tc

+

√
2v
tc

η(t),� (87)

where η(t) is a Gaussian white noise with zero mean and 〈η(t1)η(t2)〉 = δ(t1 − t2). The result-
ing two-component Langevin equation leads to a two-dimensional Fokker–Planck equation for 
the joint probability P(n, ξ, t) of observing a certain population size n and a certain value of the 
noise ξ at time t. Applying the WKB approximation to this two-dimensional Fokker–Planck 
equation, one arrives at a two-dimensional effective mechanical problem where, in the context 
of population extinction, one should again look for an instanton solution. In general, this two-
dimensional problem can only be solved numerically. Perturbative analytical solutions can be 
obtained in the limits of short-correlated, long-correlated and weak environmental noise. The 
details can be found in [74, 75]. Here we will only summarize the main results of these two 
works. In both cases the environmental noise causes an exponentially large reduction of the 
MTE. At fixed variance of the environmental noise, positive correlations quicken extinction.

In the absence of the Allee effect the population-size dependence of the MTE changes from 
exponential without noise to a power law for a strong short-correlated noise and to almost no 
dependence for a long-correlated noise [74]. The power-law dependence of the MTE on the 
population size for a strong white environmental noise in the absence of the Allee effect was 
known for quite a while [107, 108]. The WKB theory also gives  the optimal environmental 
fluctuation—a non-random function ξ(t)—that mostly contributes to the population extinc-
tion. The optimal fluctuation looks quite differently in different regimes, see figure 14. For a 
long-correlated environmental noise the effective birth rate slowly goes down with time, and 
then slowly recovers to its original value. In this case most of the ‘extinction current’ (the 
probability current to the absorbing state) is observed around the time when the effective birth 
rate is at a minimum, as to be expected on the physical grounds.

For short-correlated noise the optimal fluctuation is less intuitive. Surprisingly, it has a 
form of a catastrophe, when the effective birth rate abruptly drops on a certain time interval 
(which the theory predicts), stays almost constant and then returns, again abruptly, to its origi-
nal value [74]. By predicting the optimal realizations of the environmental noise in different 
regimes, the WKB method provides, in addition to the MTE, an instructive visualization and 
a better understanding of the rare events where the environmental and demographic noises 
‘coconspire’ to bring the population to extinction most effectively.

In the presence of a strong Allee effect the population-size dependence of the MTE changes 
from exponential for weak environmental noise to (approximately) no dependence for strong 
noise, implying a greatly increased extinction risk [75]. The exponential-to-power-law crosso-
ver of the MTE versus the population size, observed in the absence of the Allee effect, does 
not happen in the presence of the Allee effect. Here again, at fixed variance of the environ
mental noise, the noise correlations quicken extinction. Furthermore, the results of [75] imply 
that, at fixed variance, the MTE has a minimum at an intermediate value of the rescaled cor-
relation time of the noise. If one instead fixes the noise intensity (the product of the variance 
and correlation time), the MTE grows monotonically with the rescaled correlation time and 
reaches a plateau at long correlation times.

Apart from population biology, environmental, or extrinsic noise may play an important 
role in gene regulation [109]. The extrinsic noise results from a multitude of factors such as 
variation in the cells’ number of ribosomes, transcription factors and polymerases, fluctuations 
in the cell division time, as well as environmental fluctuations. The effect of extrinsic noise on 
the MST of a model gene regulatory network with positive feedback, see section 2.2.2, was 
studied in [50]. As in [74, 75], the authors assumed the Ornstein–Uhlenbeck extrinsic noise and 
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worked close to the saddle-node bifurcation of the deterministic model. They derived a two-
dimensional Fokker–Planck equation for the joint probability P(n, ξ, t) of observing a protein 
copy-number n and extrinsic noise magnitude ξ at time t. They also observed that the extrinsic 
noise causes an exponential decrease of the MST between metastable states. In agreement with 
[75], they found that, at fixed variance of the extrinsic noise, there is an optimal correlation 
time, τc, for which the switching occurs at the maximum rate. A simple calculation, comparing 
the relative contributions of the short- and long-correlated extrinsic noise to the MST, shows 
that τc is inversely proportional to the extrinsic noise variance [50], see figure 15.

The treatment of environmental noise in [50, 74, 75] can be generalized to a non-gaussian 
noise, as well as to escape from a metastable state when the system is not necessarily close to 
bifurcation. For a non-gaussian noise the mean, variance and correlation time do not define 
the environmental noise uniquely. For gene regulatory networks one often observes reaction 
rates that are distributed according to a negative binomial distribution or a gamma distribution. 
From a theoretical viewpoint, such distributions have an advantage over the Gaussian distribu-
tion, as for the former distributions the reaction rates cannot reach a non-positive value, while 
the Gaussian distribution must be trimmed [53]. As an example, consider a gene regulatory 
network which is responsible for production of a protein of interest, and where the extrinsic 
variable is an auxiliary protein that affects the degradation rate of the protein of interest. Such 
an extrinsic noise variable ξ with, say, a negative-binomial distribution, mean 〈ξ〉 = 1, and 
variance σ2

ex  can be generated by defining a discrete variable k = Kξ, where K � 1 is a large 
integer, and using the following master equation

Ṗm,k(t) =
α

τc
(Pm−1,k − Pm,k) +

ω

τc
[(m + 1)Pm+1,k − mPm,k]

+
ωβm
τc

(Pm,k−1 − Pm,k) +
1
τc
[(k + 1)Pm,k+1 − kPm,k].

�
(88)

Here, Pm,k(t) is the probability to create m auxiliary mRNA molecules and k auxiliary proteins 
at time t. This master equation describes the stochastic dynamics of the auxiliary circuit which 
includes mRNA transcription at a rate α/τc, mRNA degradation at a rate ω/τc, protein transla-
tion at a rate ωβ/τc  and protein degradation at a rate 1/τc [96, 97]. In the limit of short-lived 
mRNA, such that ω � 1, it can be shown that the stationary probability distribution of the 
auxiliary protein is [97]

−

−

−

−

Figure 14.  Optimal realizations of the environmental noise in the limit of long (the 
solid line) and short (the dashed line) noise correlations. tr  =  1/r is the characteristic 
relaxation time of the deterministic theory. The duration of the ‘catastrophe’ for the 
short-correlated noise is t̃ � tr ln(Kvtc/µ), where K  =  r/a. Reprinted figure with 
permission from [74], copyright 2015 by the American Physical Society.
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Pk =
Γ(α+ k)

Γ(k + 1)Γ(α)

(
β

β + 1

)k (
1

β + 1

)α

,� (89)

where Pk is the probability to find k auxiliary proteins. The mean of this distribution is αβ, while 
its variance is αβ(1 + β). As a result, since ξ = k/K, by choosing α = 1/(σ2

ex − 1/K) and 
β = Kσ2

ex − 1 we find that 〈ξ〉 = 〈k〉/K = 1, and the variance of ξ becomes the variance of k over 
K2 which equals σ2

ex as required. Finally, the correlation time of k or ξ is given by τc as required.
Using this definition of the extrinsic-noise variable, one can formulate a two-dimensional 

master equation for P(n,k,t)—the probability to find n proteins, and extrinsic noise magnitude 
ξ = k/K, at time t. This master equation can be analyzed by using a WKB approximation. The 
resulting Hamilton equations were solved for a short-correlated noise, by finding the optimal 
environmental fluctuation, and for a long-correlated noise, by adiabatic elimination of the fast 
variable [53, 110].

7.  Large deviations in multi-population systems

When the demographic noise is weak, the quasi-stationary distribution of an established popu-
lation is sharply peaked around an attractor of the corresponding deterministic theory. For 
example, for a generic two-population system this can be either an attracting fixed point or 
a stable limit cycle. The use of the WKB approximation for the analysis of multi-population 

Figure 15.  The MST versus the correlation time, τc, of the extrinsic noise for different 
variances of the extrinsic noise (a-c). σex/µ = 0.01 (a), 0.1 (b) and 0.2 (c), where μ and 
σex  are the extrinsic noise’s mean and standard deviation, respectively, while ‘low’ and 
‘hi’ denote two long-lived metastable states, see section 2.2.2. The solid lines represent 
the WKB solution, the dashed lines represent an asymptotic analytical result in the 
non-WKB regime of strong adiabatic extrinsic noise. Here the perturbed action seizes 
to be large, and the MST is governed by the mean time it takes the Ornstein–Uhlenbeck 
process to reach such noise magnitude that enables almost instantaneous switching. 
Shown in (d) is the optimal correlation time as a function of the coefficient of variation, 
σex/µ of the extrinsic noise. Reprinted figure with permission from [50], copyright 
2015 by the American Physical Society.
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systems, initially residing around an attracting fixed point, was pioneered in [27] in the con-
text of population switches, and in [31, 73] in the context of population extinction. As of 
today, there is a large number of works in these two directions, with applications ranging from 
population biology and ecology to dynamics of bacterial colonies to intracellular biochemis-
try. One way of applying the WKB ansatz is to the master equation describing the evolution 
of the probability Pm,n,...(t) of observing m, n, … individuals of each of the sub-populations at 
time t [27, 28, 31]. Alternatively, one can first derive an evolution equation for the probability 
generating function G( pm, pn, . . . , t)—a linear PDE with multiple arguments—and then apply 
the WKB ansatz [65]. In both cases the leading-order WKB approximation generates a multi-
dimensional effective classical mechanical problem. Again, extinction of one or more of the 
sub-populations, or a switch from the vicinity of one attractor to another, is encoded in an 
instanton-like trajectory.

7.1.  Established populations reside in a vicinity of a fixed point

Here we consider several examples from epidemiology, population dynamics and cell bio-
chemistry. In each of these examples, in a WKB approximation, the problem of evaluating the 
mean time to extinction/switch boils down to finding an instanton in the phase space of the 
corresponding classical mechanics, and computing the action along it. As in one-population 
problems, the instanton is a zero-energy heteroclinic trajectory which exits a deterministic 
fixed point and approaches either a non-trivial ‘fluctuational’ fixed point or another determin-
istic fixed point. For a generic multiple-population system the instanton can only be found 
numerically, and we briefly review two existing numerical methods that have been proved 
useful. We also show how one can use additional small parameters to obtain approximate 
analytical solutions.

7.1.1.  Extinction of endemic disease.  Our first example deals with ‘endemic fadeout’: spon-
taneous extinction of an infectious disease from a population after the disease has become 
endemic. The disease extinction ultimately occurs if the infectives recover, leave or die, while 
no new infectives are introduced into the susceptible population. The WKB approximation 
enables one to evaluate the MTE of the disease. Following [65], we will consider the SI (Sus-
ceptible-Infected) model of epidemiology with renewal of susceptibles [65, 73, 111–113]. In 
this model the population is divided into two dynamic sub-populations: susceptible (S) and 
infected (I). The set of processes and their rates are given in table 1.

The deterministic rate equations for the SI model can be written as

Ṡ = µN − µS − (β/N)SI,� (90)

İ = −µI I + (β/N)SI,� (91)

For a sufficiently high infection rate, β > µI , there is a stable fixed point on the S,I plane,

S̄ =
µI

β
N, Ī =

µ(β − µI)

βµI
N,� (92)

which describes an endemic state, and an unstable fixed point S̄ = N, Ī = 0 (a saddle) which 
describes an infection-free steady-state population. At µ < 4 (β − µI)(µI/β)

2 the stable fixed 
point is a focus; for the opposite inequality it is a node. The inverse of the real part of the 
eigenvalues (for the focus), or the inverse of the smaller of the eigenvalues (for the node) 
yields the characteristic relaxation time tr towards the ‘endemic fixed point’.
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The master equation  for the probability Pn,m(t) of finding n susceptible and m infected 
individuals at time t has the form

Ṗn,m =
∑
n′, m′

Mn, m; n′, m′ Pn′, m′(t)

= µ [N(Pn−1,m − Pn,m) + (n + 1)Pn+1,m − nPn,m] + µI [(m + 1)Pn,m+1 − mPn,m]

+ (β/N) [(n + 1)(m − 1)Pn+1,m−1 − nmPn,m] , for m > 0,
�

(93)

and

Ṗn,0 = µIPn,1.� (94)

Following [65], we use equation (93) to obtain an exact evolution equation for the probability 
generating function G( pS, pI , t) =

∑∞
n,m=0 pn

Spm
I Pn,m(t). This equation reads ∂tG = ĤG  with 

the effective Hamiltonian operator

Ĥ = µ( pS − 1)(N − ∂pS)− µI( pI − 1)∂pI − (β/N)( pS − pI) pI∂
2
pSpI

.� (95)

Using the WKB ansatz G( pS, pI , t) = exp[−S( pS, pI , t)] and neglecting the second derivatives 
of the action S  with respect to pS and pI, we arrive at a Hamilton–Jacobi equation ∂tS + H = 0 
in the p-space with the classical Hamiltonian

H(S, I, pS, pI) = µ( pS − 1)(N − S)− µI( pI − 1)I − (β/N)( pS − pI) pISI,
� (96)

where S = −∂pSS and I = −∂pIS. As H does not depend explicitly on time, it is an integral 
of motion: H(S, I, pS, pI) = E = const. The deterministic trajectories, described by equa-
tions  (90) and (91), lie in the zero-energy, E  =  0, two-dimensional plane pS = pI = 1. We 
are interested in extinction starting from the long-lived, quasi-stationary endemic state. This 
requires an instanton: a non-deterministic activation trajectory. The stable fixed point (92) of 
the deterministic theory becomes a hyperbolic point M2 = [S̄, Ī, 1, 1] in the four-dimensional 
phase space with two stable and two unstable eigenvalues (the sum of which is zero) and 
respective eigenvectors. There are two more zero-energy fixed points that describe an infec-
tion-free population: the point M1  =  [N, 0, 1, 1], which is also present in the deterministic 
description, and the ‘fluctuational’ fixed point F = [N, 0, 1,µI/β].

Let us sum up equation (94) over n. We obtain

d
dt

∞∑
n=0

Pn,0 = µI

∞∑
n=0

Pn,1.� (97)

The left hand side in equation  (97) describes the growth rate of the probability of disease 
extinction with time, whereas the right hand side is equal to µI times the probability of observ-
ing exactly one infected individual (at any number of susceptibles). At times much longer 
than the characteristic relaxation times of the deterministic theory, the probability distribu-
tion Pn,0 is sharply peaked close to the deterministic fixed point (N, 0) corresponding to the 

Table 1.  Stochastic SI model with renewal of susceptibles.

Process Transition Rate

Infection S → S − 1, I → I + 1 (β/N)SI
Renewal of susceptible S → S + 1 µN
Removal of susceptible S → S − 1 µS
Removal of infected I → I − 1 µI I
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infection-free steady-state population. Essentially, by using the leading-order WKB approx
imation, one replaces the sums 

∑
n Pn,0 and 

∑
n Pn,1 by their maximum terms PN,0 and PN,1, 

respectively, for the purpose of calculating the probability flux to the infection-free absorbing 
state. Correspondingly, the instanton—the optimal path of the disease extinction—is a hetero-
clinic trajectory that exits, at t = −∞, the ‘endemic’ fixed point M2 along its two-dimensional 
unstable zero-energy manifold in the four-dimensional phase space and enters, at t = ∞, the 
fluctuational extinction point F, along its two-dimensional stable manifold [31, 65].

Up to a pre-exponent, the MTE of the disease is τ ∝ exp(S0), where

S0 =

∫ ∞

−∞
( pSṠ + pI İ) dt,� (98)

and the integration is performed along the instanton going from M2 to F. Following [65] 
we introduce new ‘coordinates’ x  =  S/N  −  1 and y  =  I/N, time t̃ = µt , new momenta 
px,y = pS,I − 1 and the bifurcation parameter δ = 1 − µI/β , 0 < δ < 1. The action (98) can 
now be rewritten as S0 = Nσ, where σ(K, δ) is the action along the proper instanton of the 
rescaled Hamiltonian

H̃ = −pxx − K [(1 − δ)py + ( px − py)( py + 1)(x + 1)] y� (99)

and K = β/µ > 1. The fixed points M1, M2 and F become

[0, 0, 0, 0],
[
−δ,

δ

K(1 − δ)
, 0, 0

]
and [0, 0, 0,−δ],

respectively.
The endemic extinction instanton can be found numerically: either by the shooting method 

[28, 31, 65], or by the iteration method [114]. The shooting method works as follows. One line-
arizes the Hamilton equations near the ‘endemic’ fixed point and finds the two unstable eigenvec-
tors. The instanton is then found by looking for the correct linear combination of the two unstable 
eigenvectors of a fixed (and very small) norm. An example of an instanton, found by the shooting 
method in [65], is shown in figure 16. In this case 4Kδ(1 − δ)2 > 1, and the endemic fixed point 
M2 is a focus. For comparison, figure 16(a) also shows the deterministic heteroclinic trajectory 
(px = py = 0) connecting the fixed points M1 and M2. It describes, in deterministic terms, an epi-
demic outbreak following an introduction of a small number of infectives into a steady-state sus-
ceptible population. Deterministically, this outbreak always leads to an endemic state. In contrast 
to equilibrium systems, the x, y projection of the optimal path of a large fluctuation is different 
from the corresponding time-reversed relaxation path. As one can see, the difference between the 
‘activation spiral’ and the time-reversed ‘relaxation spiral’ in this example is striking.

The shooting method usually works well for well-mixed two-population systems (and 
for one-population systems with time-dependent rates, see figure 10 in section 6). For three-
population systems it becomes much less convenient, as now one needs to do shooting with 
respect to two parameters. The shooting method of course becomes impractical for spatially 
explicit systems (which, after discretization, represent multi-dimensional systems with a very 
large number of ‘dimensions’). Here the back-and-forth iteration method comes to rescue. The 
iteration method was suggested by Chernykh and Stepanov [114] in the context of the instan-
ton theory of the ‘Burgers turbulence’ [115, 116]. Then, starting from [60], it was adopted for 
population dynamics and for a host of other stochastic systems where a WKB approximation 
is used, and the ensuing Hamilton’s equations need to be solved. The back-and-forth iteration 
method is applicable if the boundary conditions in time involve the knowledge of x and y at 
the initial time and px and py at the final time. For zero-energy instantons the initial time is at 
−∞, and the final time is at +∞. The iterations proceed as follows. One solves the Hamilton 
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equations for ẋ and ẏ forward in time (with the initial conditions for x and y and with px(t) 
and py(t) from the previous iteration), and equations for ṗx  and ṗy backward in time (with the 
‘initial’ conditions for px and py and with x(t) and y(t) from the previous iteration). At the very 
first iteration reasonable ‘seed functions’ for px(t) and py(t) are used. A recent review [117] 
presents a detailed discussion of the Chernykh-Stepanov algorithm and its modifications and 
extensions in the context of hydrodynamic turbulence.

Let us return to the endemic fadeout in the SI model. At δ � 1—close to the bifurcation 
point corresponding to the emergence of an endemic state—the system exhibits time-scale 
separation, and the optimal path to extinction and the action can be calculated analytically 
[31, 65]. Introducing rescaled variables q1 = x/δ , q2 = yK/δ, p1 = px/δ

2, and p2 = py/δ 
and neglecting higher order terms in δ, one obtains the following approximate equations of 
motion:

q̇1 = −q1 − q2 ,
ṗ1 = p1 − q2p2 ,

q̇2 = Kδ q2(1 + q1 + 2p2) ,
ṗ2 = Kδ (p1 − p2 − p2

2 − q1p2) .
� (100)

The fixed points become M1  =  [0, 0, 0, 0], M2  =  [−1, 1, 0, 0], and F  =  [0, 0, 0, −1]. For 
Kδ � 1 the subsystem (q1, p1) is fast, whereas (q2, p2) is slow. On the fast time scale (that is, 
the time scale µ−1 in the original, dimensional variables) the fast subsystem approaches the 
state q1 � −q2 and p1 � q2p2 which then slowly evolves according to the equations

q̇2 � Kδ q2(1 − q2 + 2p2), ṗ2 � Kδ p2(2q2 − 1 − p2)� (101)

that are Hamiltonian, as they follow from the reduced Hamiltonian 
Hr(q2, p2) = Kδ q2p2(1 − q2 + p2). This universal Hamiltonian appears in the theory of a 
whole class of single-species models in the vicinity of the transcritical bifurcation point [106], 
see also section 6.2. As Hr(q2, p2) is independent of time, it is an integral of motion. The optimal 
extinction path goes along the zero-energy trajectory 1 − q2 + p2 = 0. Evaluating the action 

(98) along this trajectory, we find in the leading order: S0 �
[
Nδ3/(Kδ)

] ∫ 0
1 p2dq2 = Nδ2/(2K). 

For the MTE of the disease we obtain

Figure 16.  (a) The x, y projection of the four-dimensional optimal path in the phase 
space of the SI model with population turnover (the lower curve) and the deterministic 
trajectory (px = py = 0) describing an epidemic outbreak (the upper curve). (b) The 
px, py projection of the optimal path. x  =  S/N  −  1, y  =  I/N; K = 20 and δ = 0.5.
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ln(τ)/N � δ2/(2K) = [µ/(2β)] (1 − µI/β)
2 ;� (102)

this asymptote is valid when S0 � 1. Many other stochastic multi-population models exhibit 
a similar time-scale separation close to the bifurcation, defining a universality class [31, 106].

7.1.2.  Speeding up endemic disease extinction with a limited vaccination.  A common way of 
fighting epidemics is vaccination. Mathematical modeling of different aspects of vaccination 
has attracted considerable attention from mathematicians and, more recently, from physicists 
[118]. Here we will briefly consider only one aspect of vaccination, following [38]. If there 
is enough vaccine (and the susceptible individuals are willing to be vaccinated), the infection 
may be often eradicated ‘deterministically’. The amount of available vaccine, however, can 
be insufficient. The vaccine can be expensive, or dangerous to store in large amounts, or it 
can be effectively short-lived because of mutations of the infection agent. Finally (and unfor-
tunately), many people nowadays opt out of vaccination programs for reasons unrelated to 
science. In some cases spontaneous extinction of an endemic disease from a population can 
still be greatly accelerated even if only a fraction of susceptible individuals are vaccinated  
[31, 38]. By reducing the number of susceptible individuals, the vaccination perturbs the 
instanton (which describes the optimal path toward the disease extinction in the absence of 
vaccination), and leads to a reduction of the ‘entropic barrier’ to extinction. The mathemati-
cal solution of this problem boils down to an optimization problem where one maximizes the 
reduction of the classical action for given constraints on the vaccine [38]. It turns out that, if 
the available amount of vaccine is constrained by a given average vaccination rate, the optimal 
vaccination protocol turns out to be model-independent for a whole class of epidemiological 
models (including the SI model with population turnover, considered in the previous section). 
Furthermore, if a vaccination protocol is periodic in time, the optimal protocol represents a 
periodic sequence of delta-like pulses. The disease extinction rate can strongly depend on the 
period of this sequence, and display sharp peaks when the vaccination frequency is close to 
the characteristic frequency of the oscillatory deterministic dynamics of the epidemic in the 
absence of demographic fluctuations, or to its sub-harmonics [38].

7.1.3.  Minimizing the population extinction risk by migration.  In our next example we will fol-
low [47] and evaluate the MTE of a metapopopulation which consists of several local popu-
lations occupying separate ‘patches’. A local population is prone to extinction due to the 
demographic noise. A migrating population from another patch can dramatically delay the 
extinction. What is the optimal migration rate that maximizes the MTE of the whole popula-
tion? This question was addressed in [47]. The authors considered N local populations of 
individuals A located on a connected network of patches i  =  1, 2,..., N with different carrying 
capacities. The individuals undergo branching A → 2A with rate constant 1 on each patch 
and annihilation 2A → ∅ with rate constant 1/(κiK) on patch i. It is assumed that K � 1. 
The parameters κi = O(1), i = 1, 2, . . . , N , describe the difference among the local carrying 
capacities κiK . Each individual can also migrate between connected patches i and j with rate 
constant µij = µji. It is assumed that µij = µMij, where elements of Mij are of order unity.

The MTE of the meta-population, τ, is exponentially large in K but finite. How does τ depend 
on the characteristic migration rate μ? At µ = 0 each local population goes extinct separately, 
and τµ=0 is determined by the patch with the greatest carrying capacity, Km = K maxi{κi}:

ln τµ=0/K � 2(1 − ln 2) max
i

{κi}� (103)

see equation (62). At very fast migration, µ → ∞, the local populations are fully synchro-
nized: both at the level of the expected local carrying capacities, and at the level of large 
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fluctuations leading to population extinction. The total carrying capacity of the meta-popula-
tion, as derived from the deterministic rate equation for this model [47], becomes κ̄K, where

κ̄ = N2/
∑

(κ−1
i ).� (104)

As a result, at µ → ∞ the meta-population goes extinct as if it were occupying a single effec-
tive patch with the total rescaled carrying capacity κ̄, that is

ln τµ→∞/K � 2(1 − ln 2) κ̄.� (105)

The main result of [47] is that, for unequal κi, τ reaches its maximum at a finite (and very 
small) value of the migration rate. This fact is intimately related to synchronization of the 
most probable local extinction events that occurs already at very small but positive migration 
rates. The synchronization makes τ close to that for a single patch with the combined carrying 
capacity K

∑
i κi:

ln τµ→+0/K � 2(1 − ln 2)
∑

i

κi.� (106)

Now let us inspect the MTE in the cases of µ = 0, µ = ∞ and very small but finite μ, as described 
by equations (103), (105) and (106), respectively. As 

∑
i κi � maxi{κi} and 

∑
i κi � κ̄ for any 

κi, the MTE must indeed reach a maximum at a finite value µ = µ∗, unless all the patches have 
the same carrying capacity. As was found in [47], µ∗ � 1 and scales as 1/K.

Now we expose the theory of [47] in some detail. For simplicity, we will limit ourselves to 
a system of only two patches. The deterministic rate equations are:

ẋ = x − x2 − µx + µy, ẏ = y − y2

κ
+ µx − µy,� (107)

where x and y are the local population sizes rescaled by κ1K, and κ = κ2/κ1. Equations (107) 
have two fixed points: the unstable point x0 = y0 = 0 that describes an empty system, and 
a stable point [x∗(κ,µ) > 0, y∗(κ,µ) > 0] that describes an established meta-population. At 
µ = 0 one has x*  =  1 and y∗ = κ, whereas for infinitely fast migration, µ → ∞,

x∗ = y∗ = 2κ/(1 + κ).� (108)

The characteristic time tr of population establishment is determined by the smaller of the two 
eigenvalues of the linear stability matrix of equations (107) at the fixed point (x∗, y∗).

In the stochastic formulation, the probability Pm,n(t) to find m individuals in patch 1 and n 
individuals in patch 2 evolves in time according to the master equation

Ṗm,n(t) = ĤPm,n ≡ (m − 1)Pm−1,n + (n − 1)Pm,n−1

+
(m + 1)(m + 2)

2K
Pm+2,n +

(n + 1)(n + 2)
2κK

Pm,n+2

+ µ(m + 1)Pm+1,n−1 + µ(n + 1)Pm−1,n+1

−
[
(1 + µ)(m + n) +

m(m − 1)
2K

+
n(n − 1)

2κK

]
Pm,n.

�

(109)

The probability P0,0 that the meta-population goes extinct by time t obeys the equation

Ṗ0,0(t) =
1
K

P2,0 +
1
κK

P0,2.� (110)

At t � tr, Pm,n(t) is sharply peaked at the local carrying capacities m∗ = Kx∗ and n∗ = Ky∗, 
corresponding to the stable fixed point (x∗, y∗) of the deterministic theory. The subsequent 
slow decay of Pm,n in time is determined by the lowest excited eigenmode πm,n of the 
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master equation operator Ĥ: Pm,n(t) � πm,n exp(−t/τ). Simultaneously, a probability peak 
at m  =  n  =  0 grows with time: P0,0(t) � 1 − exp(−t/τ). The inverse eigenvalue τ is an accu-
rate approximation to the MTE. Since it is exponentially large with respect to K � 1, one 
can neglect the right-hand-side of the eigenvalue problem Ĥπm,n = −πm,n/τ  and consider the 
quasi-stationary equation  Ĥπm,n � 0. Once πm,n is found, the MTE can be determined from 
equation (110):

τ = [π2,0/K + π0,2/(κK)]−1� (111)

The WKB ansatz for πm,n is

πm,n = exp[−KS(x, y)],� (112)

where x  =  m/K and y  =  n/K. In the leading order in 1/K � 1 one obtains a zero-energy 
Hamilton–Jacobi equation H(x, y, ∂xS, ∂yS) = 0 with classical Hamiltonian

H(x, y, px, py) = x (e px − 1) +
x2

2
(
e−2px − 1

)
+ y (e py − 1) +

y2

2κ
(
e−2py − 1

)

+ µx
(
e−px+py − 1

)
+ µy

(
e px−py − 1

)
.

�

(113)

The established population corresponds to the fixed point M = (x∗, y∗, 0, 0) of the Hamiltonian 
flow. Up to a pre-exponent, τ ∼ exp(KS), where S is the action along the instanton that exits, 
at time t = −∞, the fixed point M and approaches the fluctuational extinction point F that, 
for the two-patch branching-annihilation model, is (0, 0,−∞,−∞). In general, the instanton 
and the action along it can be found only numerically. Analytical results are possible in the 
limits of small and large μ. When µ → +0 the Hamiltonian (113) becomes separable, and the 
extinction instanton can be easily found analytically leading to the MTE (106) with N  =  2. This 
MTE is exponentially large compared to the one obtained if one neglects migration completely, 
see equation (103) with max{κi} = 1. The sharp increase of τ once slow migration is allowed 
results from synchronization of the most probable local extinction paths of the local populations.

The first order correction in μ to the action can be calculated perturbatively, similarly 
to the case of a weak environmental modulation, see section 6.1.1, by integrating the terms 

Figure 17.  K−1 ln τ  versus the migration rate μ for a two-patch metapopulation and 
κ = 0.25. Circles: numerical WKB solutions. Diamond and square: predictions of 
equations  (103) and (105), respectively. Dashed line: prediction of linear theory for 
µ � 1. Dotted line: prediction of the theory for µ � 1. The solid line was obtained 
from a numerical solution of the master equation (109) for K  =  220. Reprinted figure 
with permission from [47], copyright 2015 by the American Physical Society.
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proportional to μ of the classical Hamiltonian (113) over the unperturbed (µ → +0) x- and 
y-instantons. In the opposite limit, µ → ∞, the total population size Q  =  x  +  y varies slowly 
in comparison with the fast migration. The fast variables x and y rapidly adjust to the slow 
dynamics of Q, staying close to their stationary values for the instantaneous value of Q. 
Transforming to Q and q  =  x and associated conjugate momenta as a new set of canoni-
cal variables, one arrives at an effective one-dimensional Hamiltonian. The action along its 
instanton can be calculated analytically, and it yields equations (104) and (105) with N  =  2. 
It would be interesting to also calculate the subleading correction in 1/µ. Figure 17 shows 
the numerically found S for κ = 0.25 and different μ. The numerical instantons were found 
in [47] by using both the shooting method and the iteration method, with very close results.

At µ � 1 and µ � 1 the numerical results agree with analytical predictions. Figure 17 also 
compares the WKB results with those of a numerical solution of (a truncated version of) the 
full master equation (109).

To evaluate the maximum MTE and the optimal migration rate, one needs to resolve the 
jump of (ln τ)/K  at µ = 0 predicted by the WKB theory, see equations  (103) and (106). 
The authors of [47] determined the MTE for very small μ by numerically solving the master 
equation (109) and by performing stochastic simulations. The resulting μ-dependence of the 
MTE, at κ = 0.25 and different K, is shown in figure 18. The maximum of τ is observed at a 
small migration rate µ∗ that apparently scales as K−1. This regime is beyond the WKB approx
imation, and an analytical theory of this regime is currently unavailable.

7.1.4.  Multiple routes to extinction.  In some population models extinction of a population may 
occur via more than one scenario. This situation was considered in [44] on the example of a 
simple predator-prey model, see table 2. This model generalizes the celebrated Lotka–Volterra 
model [119] by taking into account competition among prey.

By re-interpreting the rabbits (R) as susceptibles (S) and the foxes (F) as infected (I), this 
model also describes extinction of an endemic disease in an isolated community [44]. As in 
the SI model with population turnover, a susceptible individual can become infected upon 
contact with another infected, and the susceptibles and infectives are removed with constant 
per-capita rates. In the conventional SI model with population renewal, see section 7.1.1, the 
susceptibles arrive from outside. Instead, in the modified SI model, the susceptibles reproduce 
by division. Finally, the susceptibles compete for resources, 2S → S, so their population size 
remains bounded.

Introducing the rescaled population sizes x  =  R/N and y  =  F/N, one can write the deter-
ministic rate equations as

ẋ = (a − b)x − xy
Γ

− x2

2
, ẏ =

xy
Γ

− y.� (114)

Table 2.  Stochastic predator-prey model. Reprinted table with permission from [44], 
copyright 2015 by the American Physical Society.

Process Transition Rate

Birth of rabbits R → 2R aR
Predation and birth of foxes F + R → 2F RF

ΓN
Death of foxes F → ∅ F
Death of rabbits R → ∅ bR
Competition among rabbits 2R → R R(R+1)

2N
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These equations  are fully characterized by two parameters, a  −  b and Γ. For a  >  b and 
Γ < Γ∗ ≡ 2(a − b), equations  (114) have three fixed points corresponding to non-negative 
population sizes. The fixed point M1 ( x̄1 = 0, ȳ1 = 0) describes an empty system. It is a 
saddle point: attracting in the y-direction (no rabbits), and repelling in the x-direction. The 
fixed point M2 [ x̄2 = Γ∗, ȳ2 = 0] describes an established population of rabbits in the absence 
of foxes. It is also a saddle: attracting in the x-direction (no foxes), and repelling in a direc-
tion corresponding to the introduction of a small number of foxes into the system. The third 
fixed point M3 [ x̄3 = Γ, ȳ3 = Γ(Γ∗ − Γ)/2] is attracting and describes the ‘coexistence’ state. 
It is either a stable node (for Γ > Γ0 = 4(

√
1 + a − b − 1)), or a stable focus (for Γ < Γ0). 

Note that ȳ3 is a non-monotonic function of Γ. It vanishes at Γ = 0 and Γ = Γ∗, and reaches 
a maximum, Γ2

∗/8, at Γ = Γ∗/2 corresponding to the optimal predation rate. Figure 19 shows 
two examples of deterministic trajectories: for Γ0 < Γ < Γ∗ (a) and for Γ < Γ0 (b).

Reintroducing the stochasticity, both populations ultimately go extinct, but now there are 
two distinct extinction routes. In the first, sequential route the predators (or infectives) go 
extinct first, whereas the prey (or susceptibles) typically thrive for a long time and only then 
go extinct. In the second, parallel route the prey (or susceptibles) go extinct first, causing a 
rapid extinction of the predators (or infected).

Let Pm,n(t) be the probability to observe, at time t, m rabbits and n foxes, where 
m, n = 0, 1, 2 . . .. The evolution of Pm,n(t) is described by the master equation

Ṗm,n = ĤPm,n = a[(m − 1)Pm−1,n − mPm,n]

+ (1/ΓN)[(m + 1)(n − 1)Pm+1,n−1 − mnPm,n]

+ b[(m + 1)Pm+1,n − mPm,n] + (n + 1)Pm,n+1 − nPm,n

+ (1/2N)[(m + 1)mPm+1,n − m(m − 1)Pm,n],

�

(115)

where Pi,j  =  0 when any of the indices is negative. Before delving into the WKB analysis of 
this master equation, let us discuss the probability flow in this system. At large N and at suffi-
ciently long times, the probability distribution Pm,0(t) with m  >  0, which describes the dynam-
ics of rabbits conditional on prior extinction of the foxes, is a one-dimensional distribution 
peaked at the fixed point M2 of the deterministic theory. The probability distribution Pm,n(t) 

Figure 18.  K−1 ln τ  versus μ (a) and lnµ (b) for a two-patch meta-population from 
a numerical solution of the master equation and stochastic simulations. (a) κ = 0.25 
and K  =  20, 30, 40 and 50 (bottom to top). Inset: the migration rate µ∗, at which the 
maximum of the MTE is observed, versus K. (b) κ = 0.25 and K  =  20; dashed line: 
equation (103) with N  =  2, dotted line: equations (104) and (105) with N  =  2. Reprinted 
figure with permission from [47], copyright 2015 by the American Physical Society.
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with m,n  >  0 (which describes the long-time dynamics of the coexisting rabbits and foxes) is 
a two-dimensional distribution peaked at the fixed point M3. Finally, the extinction probability 
of both sub-populations P0, 0(t) corresponds to a Kronecker-delta probability distribution. Not 
only the structure, but the long-time dynamics of these three distributions are different. To 
emphasize this point, the authors of [44] defined the total ‘probability contents’ of the vicini-
ties of each of the fixed points M1, M2 and M3:

P1(t) = P0,0(t),� (116)

P2(t) =
∞∑

m=1

Pm,0(t),� (117)

P3(t) =
∞∑

m=1

∞∑
n=1

Pm,n(t).� (118)

At N � 1 and t � tr  the sums in equations (117) and (118) are mostly contributed to by close 
vicinities of the points M2 and M3, respectively. The long-time evolution of P1(t), P2(t) and 
P3(t) is described by the effective three-state master equation:

Ṗ1 = r21P2 + r31P3, Ṗ2 = −r21P2 + r32P3, Ṗ3 = −(r31 + r32)P3,� (119)

where rij is the (yet unknown) transition rate from the vicinity of the fixed point i to the vicin-
ity of the fixed point j. Let the initial condition correspond to the coexistence state around M3:

[P1(0), P2(0), P3(0)] = (0, 0, 1).� (120)

Then the solution of equation (119) is

P1(t) = 1 +
r32 e−r21t + (r31 − r21) e−(r31+r32)t

r21 − r31 − r32
,� (121)

P2(t) =
r32 [e−(r31+r32)t − e−r21t]

r21 − r31 − r32
,� (122)

Figure 19.  Deterministic trajectories of the predator-prey model (see table 2) for a  =  2, 
b  =  1 and two different values of Γ. (a) Γ = 1.8: M3 is a stable node. (b) Γ = 0.4: M3 
is a stable focus. Reprinted figure with permission from [44], copyright 2015 by the 
American Physical Society.
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P3(t) = e−(r31+r32)t.� (123)

Once the transition rates r31, r32 and r21 are known, equations (121)–(123) provide a useful 
‘coarse-grained’ description of this system in terms of the long-time evolution of the prob-
abilities to observe the coexistence state around M3, the fox-free state around M2 and the 
extinction state at M1. In particular, the MTE of foxes is τF � (r31 + r32)

−1, whereas the MTE 
of both populations is

τRF =

∫ ∞

0
dt t Ṗ1(t) =

r21 + r32

r21(r31 + r32)
.� (124)

The transition rate r21 comes from solving the one-population problem R � 2R and R → ∅; it 
is known with a high accuracy [30, 35]. To evaluate the transition rates r31 and r32, the authors 
of [44] used the real-space WKB theory. The classical Hamiltonian takes the form

H(x, y, px, py) = ax (e px − 1) + bx
(
e−px − 1

)
+

xy
Γ

(
e py−px − 1

)
+ y

(
e−py − 1

)
+

x2

2
(
e−px − 1

)
.

�
(125)

The Hamiltonian flow, generated by this Hamiltonian, has five zero-energy fixed points:

M1 = (0, 0, 0, 0); M2 = (Γ∗, 0, 0, 0); M3 = [Γ,Γ(Γ∗ − Γ)/2, 0, 0];
F1 = [0, 0, ln(b/a), 0]; F2 = [Γ∗, 0, 0,− ln(Γ∗/Γ)].

�

(126)

The zero-momentum fixed points M1, M2 and M3 correspond to the three fixed points of the 
deterministic equations (114). The two other fixed points, F1 and F2, are fluctuational fixed 
points describing a fox-free state at a non-zero number of rabbits (F2) and an empty system 
(F1). The two different routes to extinction—the sequential and the parallel—are encoded in 
two different instantons. Both start from the fixed point M3 which describes the established 
populations, but end in a different fluctuational fixed point, F1 or F2. The instantons and the 
action along each of the instantons can be found numerically [44]. Figure 20 shows typical 
examples of the numerically found instantons M3F1 and M3F2 in the case when M3 is a node. 
Figure 21 refers to the case when M3 is a focus. The actions S31 and S32 along these (zero-
energy) instantons,

S31 =

∫ F1

M3

pxdx + pydy and S32 =

∫ F2

M3

pxdx + pydy,

yield, with exponential accuracy, the transitions rates r31 and r32:

r31 ∼ exp(−NS31), r32 ∼ exp(−NS32).� (127)

As the actions along the different instantons are different, and N � 1, there is usually a 
great (exponential) disparity between the transition rates: r21 � r31 � r32, implying that the 
sequential extinction route (foxes first, rabbits second) is usually much more likely than the 
parallel extinction route. In other words (and somewhat surprisingly), the predators are usu-
ally more prone to extinction than their prey.

7.1.5.  Epidemic fadeout.  An infectious disease can disappear from a population immediately after 
the first infection outbreak [2, 113]. Such an ‘epidemic fade-out’ happens if the epidemic dynam-
ics are oscillatory at the level of the deterministic theory, and the number of infected individuals 
at the end of the first outbreak of the disease is relatively small so that fluctuations in the disease 
transmission and in the recovery or removal of the infected can ‘switch off’ the disease. Epidemic 
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fade-out has been mostly addressed by epidemiologists via stochastic simulations. (One excep-
tion is [113] which reported important early analytical results.) To determine the probability of the 
epidemic fadeout, [73] considered the SI model with population turnover, see table 1, therefore 
the master equation coincides with equation (93). The initial condition, Pn,m(t = 0) = δn,Nδm,m0, 
used in [73], describes introduction of m0 infected individual into a steady-state susceptible popu-
lation. One boundary condition reflects the fact that m  =  0 is, for any n, an absorbing state. Being 
interested in epidemic fade-out, one should exclude from consideration all stochastic trajectories 
that do not reach the extinction boundary m  =  0 immediately after the first outbreak. This can be 
achieved by introducing an artificial absorbing boundary [58, 73, 113].

In contrast to the endemic fadeout, which is studied assuming quasi-stationarity of Pn,m, 
the epidemic fadeout occurs on a fast time scale determined by the deterministic equations. 
Still, a stationary formulation can be obtained if one uses the master equation (93) to derive 
an exact stationary equation for the mean residence time of the population in a certain state  
(n, m), where m  >  0: Tn,m =

∫∞
0 Pn,m(t) dt [73]. (Alternatively, one could write a recursive 

equation for the extinction probability starting from the state n, m, as was done in section 3.) 
The accumulated extinction probability Pn from the state (n, 1) becomes Pn = µI Tn,1, and the 
total extinction probability is P =

∑
n Pn. Integrating equation (93) over t from 0 to ∞ and 

using the equality Pn,m(t = ∞) = 0 and the initial condition, one obtains for Tn,m>0:∑
n′,m′>0

Mn,m; n′,m′ Tn′,m′ + δn,n0 δm,m0 = 0,� (128)

where Mn,m;n′,m′ was defined in equation  (93). For N � 1 this stationary equation  can be 
approximately solved by the WKB ansatz Tn,m = a(x, y) e−NS(x,y), where a and S are smooth 
functions of x  =  n/N  −  1 and y  =  m/N [73]. Remarkably, the ensuing classical Hamiltonian 
is the same as in equation (95) up to the canonical transformation from the momentum space 
to the real space.

If only a few infected individuals are introduced into an infection-free population then one 
has to find an instanton that exits, at t = −∞, the deterministic fixed point corresponding to 
the infection-free steady state [S = N, I = 0, pS = 0, pI = 0] and enters, at t = ∞, the fluctua-
tional fixed point for which S  =  N, I  =  0 and pS  =  0, but pI �= 0 [73]. As was found in [73], 
such an instanton exists if and only if the endemic fixed point, predicted by the rate equations, 
is a focus rather than a node. In fact, there exist multiple heteroclinic trajectories between the 
same two points in this case. They can be classified by whether their x, y-projections exhibit a 
single loop, two loops, three loops, etc [73]. A single-loop instanton corresponds to a disease 
fade-out immediately after the first outbreak. A two-loop instanton corresponds to a fade-out 

Figure 20.  Instantons M3F1 and M3F2 for a = 2, b = 1 and Γ = 1.8, when the fixed 
point M3 is a stable node. Shown are the x, y-projections of the four-dimensional 
instantons. Reprinted figure with permission from [44], copyright 2015 by the American 
Physical Society.
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immediately after the second outbreak, etc. An example of the x, y-projection of the one-loop 
instanton is shown in figure 22, where x  =  S/N and y  =  I/N. In the leading WKB order one has 
P ∼ Pn=N , therefore one again needs to calculate the accumulated action S0 along the instan-
ton. The numerics can be done by shooting. It is convenient to introduce the same rescaled 
parameters K = β/µ and δ = 1 − µI/β  as in section  7.1.1. As shown in [73], the regime 
of Kδ � 1 can be investigated analytically. In this regime the epidemic fadeout instanton 
closely follows the deterministic trajectory, and departs from it only when y  =  I/N becomes 
much smaller than unity, see figure 22. Further, for Kδ � 1 the fluctuations of the number 
of susceptibles can be neglected, and one can Taylor-expand the Hamiltonian in px � 1 and 
truncate the expansion at first order. Under these conditions the main contribution to the action 
comes from a narrow region of x where the instanton quickly departs from the deterministic 
orbit. The resulting action looks especially simple if, in addition to the inequality Kδ � 1, 
one also demands δ � 1. Here one obtains − lnP/N � S0 � (2δ5/πe4K)1/2(e/2)−Kδ. We 
refer the reader to [73] for details. We also note that, slightly above the node-focus transition 
of the deterministic theory, the epidemic fadeout instanton first closely follows the deter-
ministic trajectory, and then rapidly approaches the endemic fadeout instanton considered in 
section 7.1.1. The intimate connection between the three heteroclinic trajectories in the four-
dimensional phase space is fascinating. It deserves a further study and is likely to be universal 
for a whole class of models.

7.1.6.  Extinction: two more examples.  It was realized in [34] that the population extinction 
rate in multi-population systems may exhibit fragility, where the WKB action (that determines 
the effective barrier to extinction) depends on some of the elemental transition rates non-
analytically. As an example, the authors of [34] considered the classic SIS (susceptible-infec-
tious-susceptible) model and its extension accounting for population turnover. The classic 
SIS model includes the following basic reactions [6, 8, 10]. Upon interaction with an infected 
individual, a susceptible can be infected, while an infected individual can recover:

S + I
β→ I + I, I

γ→ S.� (129)

The SIS model with population turnover includes, in addition to these transitions, the renewal 
of susceptibles, ∅ µ→ S. The authors of [34] observed that the WKB action, corresponding to 
extinction of the endemic disease from the population, experiences a jump when the popula-
tion renewal is allowed, even in the limit of µ → 0. To better understand the extinction rate 

Figure 21.  (Left) instanton M3F1 and (right) instanton M3F2, for a = 2, b = 1 and 
Γ = 0.4, when the fixed point M3 is a stable focus. Shown is the x, y-projection of 
the four-dimensional instantons. Reprinted figure with permission from [44], copyright 
2015 by the American Physical Society.
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fragility, the subsequent work [120] introduced the concept of time-resolved extinction rate. 
When μ is small, there is a time-scale separation in the system which enables one to define a 
short-time quasistationary extinction rate W1 and a long-time quasistationary extinction rate 
W2, and to follow the transition between W1 and W2 as it develops in time. Importantly, W1 and 
W2 coincide with the extinction rates when the population turnover is absent and present but 
very slow, respectively. The extinction rate fragility, discovered in [34], manifests itself in the 
exponentially large disparity between W1 and W2.

An interesting variant of the problem of extinction of a stochastic metapopulation was 
considered in [121]. The authors considered N � 1 patches supporting a local birth-death-
competition population dynamics. In addition, an individual of each patch can migrate into 
a pool of migrants, and the reverse transition—from the pool to the patch—also occurs. The 
authors studied a long-lived quasi-stationary state of the system and employed the real-space 
WKB method to evaluate the MTE of the whole population. They also found the conditions 
under which their individual-based model reduces to several metapopulation models, previ-
ously used ad hoc by ecologists.

7.1.7.  Switching in a two-population system.  The calculations of the MST in the model of a 
self-regulating gene, presented in section 2.2.2, can be generalized by explicitly accounting for 
mRNA dynamics, and this generalization may dramatically affect the MST [43, 91], see below. 
Here we follow [51], where this generalization was made on an example of a one-state DNA 
model with positive feedback (see also [91]). The fact that the DNA has only one state means 
that the mRNA molecules are being constantly transcribed, as opposed to multi-state models 
[43], see figure 23(a). Regardless of the number of DNA states, we assume that the protein of 
interest positively regulates the transcription of the mRNA molecules that are responsible for 
the protein’s production, giving rise to a positive feedback loop and a genetic switch.

The deterministic rate equations for the average copy numbers of mRNA, m, and proteins, 
n, are [51]:

ṁ = f (n)− γm,
ṅ = bγm − n.
� (130)

Here transcription of mRNA occurs at a rate f(n) which depends on the current protein number, 
γ is the mRNA degradation rate, bγ  is the protein translation rate, and all rates are rescaled by 
the protein’s degradation rate or cell division rate [96]. Furthermore, in the limit of short-lived 

Figure 22.  An epidemic outbreak on the xy-plane as predicted by the deterministic 
rate equations  for the SI model (dashed line) and the epidemic fade-out instanton 
(thick solid line). For comparison, the thin solid line shows the endemic fade-out 
instanton considered in section 7.1.1. The rescaled parameters are K = β/µ = 30 and 
δ = 1 − µI/β = 0.5. For Kδ � 1 the epidemic fade-out instanton closely follows the 
deterministic trajectory and departs from it at y � 1. Reprinted figure with permission  
from [73], copyright 2015 by the American Physical Society.
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mRNA, γ � 1, b is the mean number of proteins made per mRNA [91], see below. We assume 
that the nonlinear function f(n) introduces a positive feedback leading to three deterministic 
fixed points: n1 ≡ noff < n2 < n3 ≡ non, where noff  and non are attracting fixed points corre
sponding to the off and on phenotypic states, see section 2.2.2, while n2 is a repelling fixed 
point. Let us also denote by N ≡ non � 1 the protein abundance in the on state, see below.

Being interested in the MST between, say, the on and off states, we turn to the master equa-
tion for Pm,n(t), the probability to find m mRNA molecules and n proteins:

Ṗm,n = ĤPm,n = f (n)[Pm−1,n − Pm,n] + γ[(m + 1)Pm+1,n − mPm,n]

+ bγm(Pm,n−1 − Pm,n) + (n + 1)Pm,n+1 − nPm,n.
�

(131)

To evaluate the MST, we set Pm,n = πm,ne−t/τ  and employ the WKB ansatz for the QSD, 
πm,n = π(x, y) ∼ e−NS(x,y), where x  =  m/N and y  =  n/N. In the leading WKB order the prob-
lem reduces to finding the proper instanton of the Hamiltonian [51]

H = y(e−py − 1) + bγx(e py − 1) + γx(e−px − 1) + f̃ (y)(e px − 1),� (132)

where f̃ (y) = f (n)/N. The instanton can be found numerically, e.g. via the shooting method 
[28]. Then one computes the action S(x, y) =

∫
pxdx + pydy =

∫ t
( pxẋ + pyẏ)dt along the 

optimal path, and evaluates the MST.
One regime where analytical progress is possible is that of short-lived mRNA, 

γ � 1, when there is time-scale separation between the mRNA and proteins [91, 96]. Here 
x(t) and px(t) equilibrate rapidly, and one can express x and px via the protein concentra-
tion and momentum (see also [110]). In this way one finds [51] e−px = b(1 − e py) + 1, and 
x = [ f̃ (y)/γ][b(1 − e py) + 1]−2, which gives rise to a reduced protein-only Hamiltonian [51]

Hred(y, py) = y(e−py − 1) + f̃ (y)
b(e py − 1)

b(1 − e py) + 1
.� (133)

At this point we pause and examine the effect of explicitly incorporating the mRNA spe-
cies into the gene-expression dynamics. Despite adiabatic elimination of the mRNA species, 
the reduced Hamiltonian (133) differs from the 1D Hamiltonian (43). In the former, mRNA 
noise is manifested through the nontrivial dependence of the protein production term on the 
momentum [43, 51], which effectively accounts for the fact that the proteins are produced 
in geometrically distributed bursts with mean b [43, 69, 97], see figure 24. As expected, the 
Hamiltonians coincide in the limit of b → 0 (here bf̃  is equivalent to f̃  in section 2.2.2), 
which corresponds to a constant burst size [43, 69].

Going back to our reduced Hamiltonian, the instanton is [51]

py(y) = ln
(b + 1)y

b[y + f̃ (y)]
.� (134)

Calculating the reduced action S(y) =
∫ y py(y′)dy′, which can be done explicitly for any func-

tion f̃ (y), gives rise to the protein-only QSD, π(y) ∼ e−NS(y). (Note that here while calculat-
ing the action S we have neglected the contribution from 

∫
pxdx, which scales as O(γ−1) 

compared to 
∫

pydy [43].) As a result, the MST, say from the on state to the off state, is [51]

τon→off ∼ eN[S(y2)−S(yon)].� (135)

The calculation of τoff→on is done in a similar way. Here the accumulated action, 
S(y2)− S(yoff/on), turns out to be smaller than the accumulated action obtained in the protein-
only model for any b  >  0, see section 2.2.2. As a result, an account for mRNA noise exponen-
tially decreases the MST compared to the protein-only case, see figure 24.
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The real-space WKB method can be also used in more complicated scenarios of gene regu-
latory networks in the presence of multiple DNA states, a mechanism which is used to control 
mRNA production in a more efficient manner. Examples of such analysis were presented in 
[43] for a two-state system with nonlinear feedback, and in [45, 49] for multiple DNA-state 
systems.

Let us briefly review, following [43], the case of a two-state positive feedback switch, 
which was experimentally shown to describe biological switching [122]. We consider a two-
state gene-expression model, where transitions between a transcriptionally active and inactive 
promoter are controlled by the protein copy number n via positive feedback, see figure 23(a). 
The transition rates into the active and inactive states, respectively, can be chosen to be

kon(n) = kmin
0 + (kmax

0 − kmin
0 )

nh1

nh1 + nh1
50

, koff(n) = kmin
1 + (kmax

1 − kmin
1 )

nh2

nh2 + nh2
50

.

� (136)
While the analytical approach holds for generic functions kon(n) and koff(n), the rates (136) 
were shown to be biologically relevant, e.g. in the lac operon [89]. As before, we denote the 
stable fixed points by Noff and Non, while the unstable point is N0.

In the case of the two-state model, the master equation has to be written for Pm,n and Qm,n 
representing the probability distribution functions of having m mRNAs and n proteins at time 
t with the promoter in the inactive and active state, respectively, see [43] for details. Using the 
WKB machinery, and assuming short-lived mRNA, γ � 1, one can adiabatically eliminate 

the mRNA species and arrive at a reduced two-state Hamiltonian H(2)
r (y, py) [43]:

H(2)
r = (e−py − 1)

{
y +

[
y +

e py

b(e py − 1)− 1

] [
k̃on(y)− y(e−py − 1)

k̃off(y)

]}
,

�

(137)

where k̃on/off(y) = kon/off(n)/K , and K  =  ab is the typical number of proteins in the on state. 
One finds the instanton py( y ), see figure  23(b), from the equation  H  =  0, and calculates 
S(y) =

∫ y py(y′)dy′. Setting k̃off(y) = 0, which corresponds to a one-state positive feedback 
switch, and by properly rescaling k̃on(y), one recovers equation (134). Finally, having calcu-
lated the action S( y ), the MST from the off→on states (and similarly from the on→off) is 
given by

ln τoff→on � K∆Soff,� (138)

where ∆Soff = S(y0)− S(yoff), yoff = Noff/K  and y0 = N0/K . Figure 24 compares the ana-
lytical predictions of [43] with Monte Carlo simulations (see figure  23(c)), and an excel-
lent agreement is observed. Figure 24 also demonstrates that mRNA noise can exponentially 
decrease the MST between different phenotypic states, see also [91].

7.2.  Established populations reside in a vicinity of a limit cycle

Some populations exhibit persistent oscillations in their sizes [119, 123–127]. At the level 
of the deterministic theory, these oscillations can often by described by a stable limit cycle 
in the space of population sizes. One deterministic model that shows this feature—an exten-
sion of the celebrated Lotka–Volterra model [119]—is due to Rosenzweig and MacArthur 
[128]. Qualitatively similar models are used in epidemiology—for a description of the oscil-
latory dynamics of susceptible and infected populations during an epidemic [2, 8, 129] and 
the oscillatory dynamics of tumor growth [130, 131]. Similar models describe oscillatory 
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chemical reactions [59, 132]. Population extinction, driven by demographic noise, acquires 
new features in this case, as has been shown in [57] on the example of a stochastic version of 
the Rosenzweig–MacArthur (RMA) model, see table 3. The model differs from that used in 
[44] (see table 2) in two aspects. First, in the absence of the predators, the prey is immortal. 
Second, for a very large prey population, the predation rate saturates so as to describe satiation 
of the predators.

The deterministic equations for the RMA model can be written as

ẋ = ax − x2

2
− σxy

1 + στx
, ẏ = −y +

σxy
1 + στx

,
� (139)

where x  =  R/N, y  =  F/N, and σ = sN = O(1). These equations have been extensively studied 
[128, 133, 134]. When

0 < τ < 1, σ > σ0 =
1

2a (1 − τ)
,� (140)

equations (139) have three fixed points describing nonnegative population sizes. The fixed 
point M1 (x̄1 = 0, ȳ1 = 0) describes an empty system. It is a saddle point: attracting in the 
y-direction (when there are no rabbits in the system), and repelling in the x-direction. The 
fixed point M2 (x̄2 = 2a, ȳ1 = 0) describes a steady-state population of rabbits in the absence 

Figure 23.  (a) A model for a two-state positive feedback network. Transcription of 
mRNA and translation of proteins are modeled as first-order processes with rates a 
and bγ , respectively. The mRNA and protein molecules also undergo first-order 
degradation with rates γ and 1 (all the rates are rescaled by the protein decay rate). The 
feedback functions kon(n) and koff(n) control promoter transitions. (b) The momentum 

py, obtained from solving H(2)
r (y, py) = 0 (where H is given by equation (137)) versus 

protein copy number n. The thick line indicates the off→on instanton, the thin line 
indicates the on→off instanton, while the shaded areas correspond to the switching 
actions. (c) Time-dependent fluctuations in mRNA (denoted by m), and protein (denoted 
by n) copy-numbers, in a typical Monte Carlo trajectory undergoing switching. In (b) 
and (c) K  =  ab  =  2400, b  =  22.5, h1 = h2 = 2, n50  =  1000, kmin

0 = kmin
1 = a/100, 

kmax
0 = kmax

1 = a, and γ = 50. Reprinted figure with permission from [43], copyright  
2015 by the American Physical Society.
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of foxes. It is also a saddle: attracting in the x-direction (when there are no foxes), and repel-
ling in a direction corresponding to the introduction of a few foxes into the system. The third 
fixed point M3 is given by (x̄3, ȳ3), where

x̄3 =
1

σ (1 − τ)
, ȳ3 =

2aσ (1 − τ)− 1

2σ2 (1 − τ)
2 ,� (141)

and describes a non-oscillatory coexistence of the rabbits and foxes. For

σ0 < σ < σ̄ =

aτ(1+τ)
2(1−τ) − 1 −

√
1 + a 1+τ

1−τ

a2τ 2 − 4a (1 − τ)
,� (142)

M3 is a stable node. For

σ̄ < σ < σ∗ =
1 + τ

2aτ (1 − τ)
� (143)

it is a stable focus. Finally, for σ > σ∗, M3 is unstable, and a stable limit cycle appears around 
it. A Hopf bifurcation occurs at σ = σ∗. Figure 25 shows the behavior of the deterministic 
model for σ̄ < σ < σ∗ (a) and for σ > σ∗ (b).

Reintroducing the noise, one can see that, following the population establishment (either 
around the fixed point, or around the limit cycle), there are two extinction routes in this model. 
In the first (parallel) route all the rabbits are eaten by the foxes, followed by a quick extinc-
tion of the foxes. In the second route the foxes go extinct, while the (immortal) rabbits reach 
a steady state. Smith and Meerson [57] considered these two routes for σ > σ∗, when the 

Figure 24.  (a) The MST τoff→on as a function of the mean burst size b for the two-
state model presented in figure  23. Here K  =  ab  =  2400, h1 = h2 = 2, n50  =  720, 
kmin

0 = kmin
1 = a/100, kmax

0 = kmax
1 = a and γ = 50. Shown are results of Monte-Carlo 

simulations, see figure 23(c), of the full two-component model (x’s), simulations of 
the protein-only model with geometrically-distributed bursts with mean b (�) and 
simulations of the protein-only model with constant burst size b (°). The line is the 
theoretical prediction. It is evident that, while incorporating the protein production via 
geometrically-distributed bursts effectively accounts for the mRNA noise, ignoring the 
mRNA noise exponentially increases the MST. Reprinted figure with permission from 
[43], copyright 2015 by the American Physical Society.
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established populations are distributed in the vicinity of the stable limit cycle of the determin-
istic theory.

Again, we denote by Pm,n (t) the probability to observe m rabbits and n foxes at time t. The 
master equation is

Ṗm,n = ĤPm,n = a [(m − 1)Pm−1,n − mPm,n]

+
σ (m + 1) (n − 1)
N + στ (m + 1)

Pm+1,n−1 −
σmn

N + στm
Pm,n

+ (n + 1)Pm,n+1 − nPm,n + (1/2N)[(m + 1)mPm+1,n − m(m − 1)Pm,n],
�

(144)

where Pm,n  =  0 when any of the indices is negative. As in section 7.1.4, one can define the 
‘effective probability contents’ of the vicinities of the fixed points M1 and M2 via equa-
tions (116) and (117). In its turn, equation (118) now defines the effective probability content 
of the limit cycle. The long-times dynamics of P1(t), P2(t) and P3(t) are given by the three-
state master equation [57]

Ṗ1 = R1P3, Ṗ2 = R2P3, Ṗ3 = −(R1 +R2)P3,� (145)

where R1 and R2 are the extinction rates along the first and second extinction route, respec-
tively. For the initial condition [P1 (0) , P2 (0) , P3 (0)] = (0, 0, 1) the solution of equa-
tions (145) is

P1(t) =
R1

[
1 − e−(R1+R2)t

]
R1 +R2

,� (146)

P2(t) =
R2

[
1 − e−(R1+R2)t

]
R1 +R2

,� (147)

P3(t) = e−(R1+R2)t.� (148)

As one can see from equations (146)–(148), the long-time behavior of the system is deter-
mined by the extinction rates R1 and R2. These can be evaluated in the WKB approximation. 
The effective Hamiltonian is [57]

H (x, y, px, py) = ax (e px − 1) +
σxy

1 + στx

(
e py−px − 1

)
+ y

(
e−py − 1

)
+

x2

2
(
e−px − 1

)
.

� (149)
The three deterministic fixed points become M1 = (0, 0, 0, 0) , M2 = (2a, 0, 0, 0) and 
M3 = (x∗, y∗, 0, 0). In its turn, the deterministic limit cycle is an exact time-periodic solution 
of the Hamilton equations with px = py = 0. There are also two fluctuational fixed points:

Table 3.  Stochastic Rosenzweig–MacArthur model. Reprinted figure with permission 
from [57], copyright 2015 by the American Physical Society.

Process Transition Rate

Birth of rabbits R → 2R aR
Predation and birth of foxes F + R → 2F sRF

1+sτR
Death of foxes F → ∅ F
Competition among rabbits 2R → R R(R+1)

2N
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F1 = (0, 0, 0,−∞) , F2 =

[
2a, 0, 0, ln

(
1 + 2aτσ

2aσ

)]
.� (150)

The extinction rates R1 and R2 can be evaluated by evaluating the actions S1 and S2 along the 
instantons in the four-dimensional phase space. These instantons exit, at t = −∞, the deter-
ministic limit cycle and approach, at t = ∞, the fluctuational fixed point F1 or F2, respectively:

S1 =

∫ F1

(xlc,ylc)

pxdx + pydy and S2 =

∫ F2

(xlc,ylc)

pxdx + pydy,

The extinction rates R1 and R2 are, with exponential accuracy,

R1 ∼ exp(−NS1), R2 ∼ exp(−NS2).� (151)

Until recently, no numerical algorithm existed for finding an instanton that describes a 
fluctuation-driven escape from a deterministically stable limit cycle. One such algorithm has 
been recently developed [57]. It is based on Floquet theory of differential equations with peri-
odic coefficients, see e.g. [135]. The reader is referred to [57] for a detailed description of the 
algorithm. Examples of instantons, found with this algorithm, are shown in figure 26.

Figure 27 compares the extinction rates Ri obtained by solving numerically the (truncated) 
master equation  (144), with the numerical result of the leading order WKB approximation, 
e−NSi. In its turn, figure 28 shows the MTE of foxes MTEF and the ratio of the probabilities of 
the two extinction routes, P1/P2, obtained by averaging over many Monte-Carlo simulations 
of the stochastic model. The same figure shows the corresponding leading-order WKB predic-
tions 

(
e−NS1 + e−NS2

)−1 � eNS2 and eN(S2−S1), respectively. In both cases a good agreement, up 
to undetermined WKB prefactors, was observed between the numerical and WKB results [57].

[57] also showed that the ‘extinction action’ changes in a non-analytic way as the system 
passes through the Hopf bifurcation of the deterministic theory at σ = σ∗, when the limit cycle 
is born. The second derivative of the action with respect to σ experiences a jump at σ = σ∗ as 
in a second-order phase transition. Finally, using the numerical results for the actions S1 and 
S2 along the instantons, and numerically solving the master equation (144), the authors of [57] 
determined the N-dependence of the prefactors Fi  of the rates, Ri = Fie−NSi, i  =  1,2 at N � 1, 
and followed the change of the N-dependence as the system passes through the Hopf bifurca-
tion. At σ < σ∗, the prefactors behave as F ∝ N1/2. Above the bifurcation the prefactors are 
independent of N. These findings can be explained by simple normalization arguments [57].

Figure 25.  Deterministic trajectories of the Rosenzweig–MacArthur model (139) for 
a  =  1, τ = 0.5 and two different values of σ: σ = 2.6, where M3 is a stable focus (a), 
and σ = 3.2, where M3 is an unstable focus, and a stable limit cycle exists (b). Reprinted 
figure with permission from [57], copyright 2015 by the American Physical Society.
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8.  Population extinction on heterogeneous networks

Population dynamics on heterogenous networks are very different from those in well-mixed 
settings because of the variability in the reaction rates along the network [136, 137]. While 
rare events have been studied on Erdös–Rényi networks, which are only slightly heteroge-
nous, see e.g. [138], the recent years have witnessed a surge of works on the long-time popula-
tion dynamics on degree-heterogenous networks with strong heterogeneity, such as scale-free 
networks [139]. [140–142] studied evolutionary models where the network nodes represent 
either a wild-type individual A, or a mutant B, and their interactions such as A + B → A + A 
or A + B → B + B determine the evolutionary dynamics. The main questions of interest here 
are in calculating the fixation probability of each species and the mean fixation time. The 
authors of [140–142] showed that the non-trivial network topology of heterogenous graphs, 
and especially of scale-free networks, may cause a dramatic decrease in the mean time of rare 
events to occur. A striking manifestation of this fact is that, in contrast to well-mixed systems 
(or complete graphs), the logarithm of the mean time to fixation may scale sublinearly with 
the system size N, ln τ ∼ Nα, where α < 1.

Recently, in [77] the authors have investigated the long-time behavior and the MTE of 
an infectious disease on networks, using the classic SIS model of epidemiology, see equa-
tion (129). They employed the real-space WKB method to analyze the multivariate master 
equation describing the stochastic population dynamics on the network. We will now present 
their work in some detail.

Following [77], we assume an uncorrelated random network with a given degree distribu-
tion gk, such that 

∑
k gk = 1, where the degree k is the number of links of a node. Simple 

graphs with N nodes can be generated from gk in several ways, for example, with a configura-
tion model network [137]. It is useful to represent such networks by the adjacency matrix A, 
where Aij is 1 if nodes i and j are linked, and is 0 otherwise. An infected node is denoted by 
νi = 1, and a susceptible node is denoted by νi = 0. The SIS dynamics involve infection—a 
change of νi from 0 to 1—with probability per unit time β(1 − νi)

∑
j Aijνj , and recovery—a 

change of νi from 1 to 0—with probability per unit time ανi, where β and α are the infection 
and recovery rates, respectively [77].

Figure 26.  Extinction instantons (the x, y-projections) going from the stable deterministic 
limit cycle (solid line) to the fluctuational fixed points F1 (dot-dashed) and F2 (dashed). 
The parameters are a = 1, σ = 3.2, and τ = 0.5. Reprinted figure with permission  
from [57], copyright 2015 by the American Physical Society.
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To have a closed-form description, the authors of [77] assumed that there are no corre-
lations between the nodes and replaced Aij by its expectation value in an ensemble of net-
works 〈Aij〉 = kikj/(N〈k〉), in the limit of large N. This (in general, uncontrolled) assumption 
is known as the ‘annealed’ network approximation: a mean-field theory of heterogeneous 
networks [140]. Given this mean-field form, the state of the network can be described by the 
number of infected nodes with degree k, Ik, which has the corresponding reactions and rates: 
Ik → Ik + 1 with rate of infection

winf
k (I) = βk(Nk − Ik)

∑
k′

k′Ik′/(N〈k〉),

Figure 27.  Extinction rates Ri, determined by numerically solving the master 
equation (144) for different N, are compared to the extinction rates e−NSi  computed in 
the leading-order WKB approximation. The parameters are a  =  1, τ = 0.5, and σ = 3.1. 
The actions along the instantons are S1 � 0.0466 and S2 � 0.0211. The observed vertical 
shifts are due to the undetermined WKB prefactors F1 and F2. Reprinted figure with  
permission from [57], copyright 2015 by the American Physical Society.

Figure 28.  N-dependence of the MTE of foxes MTEF and of the ratio of probabilities 
of the two extinction scenarios P1/P2 for fixed a  =  1, τ = 0.5, and σ = 4. The results 
obtained by averaging over many Monte Carlo simulations are compared to the leading-
order WKB predictions. The values are plotted on a semi-log scale. The actions are 
S1 � 0.0167 and S2 � 0.006 65. As S2 < S1, the MTE of the foxes is approximated 
in the WKB theory as MTEF � eNS2. The vertical shifts are due to the undetermined 
WKB prefactors. Reprinted figure with permission from [57], copyright 2015 by the 
American Physical Society.
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and Ik → Ik − 1 with recovery rate

wrec
k (I) = αIk,

where I = (I1, I2, . . . , Ikmax), and Nk = Ngk [77].
In the stochastic description one writes down a multivariate master equation for the prob-

ability P(I, t) to find a vector of infected nodes I at time t. For networks with a general degree 
distribution the master equation reads

∂

∂t
P(I, t) =

∑
k

winf
k (I− 1k)P(I− 1k, t)− winf

k (I)P(I, t)

+wrec
k (I+ 1k)P(I+ 1k, t)− wrec

k (I)P(I, t),
�

(152)

where 1k = (0k1 , 0k2 , . . . , 1k, . . . , 0kmax). Essentially, this master equation describes the dynam-
ics of kmax interacting populations.

For large but finite networks, the population enters a long-lived endemic state. We set 
P(I, t) = π(I)e−t/τ , where τ is the MTE of the disease, and use the WKB ansatz for the QSD, 
π(x) = e−NS(x), where x = I/N. In the leading order of N � 1 this leads to a stationary 
Hamilton–Jacobi equation H(x,p) = 0 with the Hamiltonian [77]

H(x,p) =
∑

k

[
βk(gk − xk)(e pk − 1)

∑
k′

k′xk′

〈k〉
+ αxk(e−pk − 1)

]
,� (153)

where p = ∂xS  are the momenta. The problem boils down to finding the instanton: the zero-
energy activation trajectory of the Hamilton’s equations

ẏk = β̃k(1 − yk)e pk
∑

k′

k′gk′

〈k〉
yk′ − yke−pk ,

ṗk = β̃k
∑

k′

k′gk′

〈k〉

[
yk′(e pk − 1)− (1 − yk′)(e p′k − 1)

]
− e−pk + 1.

�

(154)

Here yk = xk/gk is the fraction of each degree class infected, β̃ = β/α, and time is res-
caled: t → αt. The activation trajectory must exit, at t = −∞, the endemic fixed point 
y∗k = [1 + 1/(Yβ̃k)]−1 and pk  =  0 and enter, at t = ∞, the extinction fixed point yk  =  0 and 
p∗

k = − ln[1 + β̃k(1 − P)]. The functions Y and P satisfy the conditions (Y , P) → (0, 1) 
when R0 → 1, and (Y , P) → (1, 0) as R0 → ∞, where R0 ≡ β̃〈k2〉/〈k〉 is the basic reproduc-
tion number. The MTE can be evaluated as τ ∼ eS, where S =

∑
k gk

∫
pkẏkdt is the action 

along the activation trajectory. In [77] this problem was solved numerically, whereas analyti-
cal results were obtained close to bifuraction, R0 − 1 � 1, and in the strong infection limit, 
R0 � 1.

Future work will have to account for correlations between nodes and incorporate more 
general statistics of adjacency matrix Aij.

9.  Extinction of spatial populations

It has been long known [143], that migration of individuals plays a crucial role in many 
environments of relevance to population biology and epidemiology [127]. In sections 7.1.3 
we reviewed some recent work on extinction of populations whose individuals can migrate on 
a network of ‘patches’. Here we will focus on populations whose individuals migrate in space. 
For simplicity, we will limit ourselves to one spatial dimension. Following [60, 78], let us 
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consider a single population residing on a one-dimensional lattice of N � 1 sites (or habitat 
patches) labeled by index i = 1, 2, . . . , N . The population size ni at each site varies in time as 
a result of two types of Markov processes. The first set of processes involves on-site stochastic 
dynamics of birth-death type, with birth and death rates λ(ni) and µ(ni), respectively, where 
µ(0) = 0. As there is no creation of new individuals ‘from vacuum’, one also has λ(0) = 0. 
The second process is random and independent migration of each individual between neigh-
boring sites with migration rate coefficient D0. What happens at the edges of the refuge, i  =  1 
and i  =  N, needs to be specified separately.

Assuming ni � 1 and neglecting fluctuations, one obtains a set of coupled deterministic 
rate equations

ṅi = λ(ni)− µ(ni) + D0(ni−1 + ni+1 − 2ni).� (155)

Let the characteristic population size on a single site, predicted by a non-trivial steady-state 
solution of equation (155), scale as K � 1. This implies [35, 72] that, in the leading order of 
K, we can represent the birth and death rates as

λ(ni) = µ0Kλ̄(qi) and µ(ni) = µ0Kµ̄(qi),� (156)

where qi = ni/K  is the rescaled population size at site i, λ̄(qi) ∼ µ̄(qi) = O(1), and µ0 is a 
characteristic rate coefficient. Now equation (155) can be rewritten as

q̇i = µ0 f (qi) + D0(qi−1 + qi+1 − 2qi),� (157)

where f (qi) = λ̄(qi)− µ̄(qi). When D0 � µ0 , one can introduce a continuous spatial coor-
dinate x instead of the discrete index i and replace the discrete Laplacian in equation (157) by 
the continuous one [78]. This leads to the reaction–diffusion equation

∂tq = µ0f (q) + D∂2
x q,� (158)

where D = D0h2 is the diffusivity, and h is the lattice spacing. The system size becomes 
L  =  Nh. Equation (158) has been the subject of numerous studies, see e.g. [127, 144]. Meerson 
and Sasorov [78] considered periodic, q(x  +  L)  =  q(x), and absorbing, q(0)  =  q(L)  =  0, 
boundary conditions. The absorbing boundaries model extremely harsh conditions outside of 
the refuge [60, 143]. Results for still another type of boundaries—reflecting walls at x  =  0 and 
x  =  L—can be easily obtained from the results for periodic boundaries.

Spatial deterministic profiles of established populations are described by stable steady-
state solutions q  =  q(x)  >  0 of equation (158). They satisfy the ODE

Dq′′(x) + µ0f (q) = 0
� (159)

subject to the chosen spatial boundary conditions. The first integral of this equation,

D
2µ0

(q′)2
+ V(q) = const,

� (160)
with effective potential V(q) =

∫ q
0 f (ξ) dξ , makes the problem solvable in quadratures and 

readily yields the phase portrait of possible steady states on the plane (q, q′). Importantly, the 
reaction–diffusion equation (158) is a gradient flow, ∂tq = −δF/δq, where

F [q(x, t)] =
∫ L

0
dx

[
−µ0V(q) + (1/2)D(∂xq)2] .� (161)

Therefore, it describes a deterministic flow towards a minimum of the Ginzburg–Landau free 
energy F [q]. This helps identify linearly stable and unstable x-dependent solutions, as they 
correspond to local minima and maxima of F [q], respectively [144].
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Going back to the lattice formulation and reintroducing the stochasticity of the on-site 
processes and of the migration, one should deal with a master equation for the multivariate 
distribution of population sizes on different patches [60, 78]. Being interested in extinction 
of established populations in a finite region of space, one arrives at a quasi-stationary mas-
ter equation [78]. Applying the WKB ansatz to the quasi-stationary equation, and assuming 
a high migration rate, one finally arrives at the following Hamilton’s equations  in the real  
space [78]:

∂tq = µ0
[
λ̄(q)e p − µ̄(q)e−p]+ D

[
∂2

x q − 2∂x (q∂xp)
]

,� (162)

∂tp = −µ0
[
λ̄′(q)(e p − 1) + µ̄′(q)(e−p − 1)

]
− D

[
∂2

x p + (∂xp)2
]

,� (163)

Equivalent equations, up to a canonical transformation, were obtained in [60]. Without migra-
tion, these equations  coincide with those for well-mixed populations, see equation  (12). 
Without births and deaths, they describe a simple particular case—non-interacting random 
walkers—of the so called macroscopic fluctuation theory: a WKB theory of large deviations 
in diffusive lattice gases [145].

The boundary conditions in space are problem-dependent, see above. For periodic or no-
flux boundaries p(x, t) is also periodic or no-flux at the boundaries. For the absorbing bounda-
ries p vanishes at the boundary (up to corrections linear in the lattice constant) [78]. As shown 
in [78], the optimal path of a quasi-stationary population to extinction is again an instanton: 
a ‘heteroclinic trajectory’ between two ‘fixed points’ in the infinite-dimensional functional 
phase space of the system. The first ‘fixed point’ corresponds to the long-lived quasi-station-
ary distribution of the population size in space. In the absence of the Allee effect, the second 
‘fixed point’ corresponds to a zero-population-size state with a nontrivial spatial profile of the 
conjugate momentum p. This extinction instanton can be found numerically by the Chernykh-
Stepanov iteration algorithm [114], and in some limits analytically, see [60, 78].

In the presence of a sufficiently strong Allee effect the second ‘fixed point’ of the hetero-
clinic trajectory is deterministic. It describes the critical nucleus for extinction: [78]. Let us 
assume periodic boundaries, see figures 29 and 30. Here the only linearly stable nontrivial 
deterministic steady-state solution is the x-independent solution q  =  q2, where q2  >  0 is the 
attracting point of the deterministic equation  q̇ = µ0f (q). A sufficiently large perturbation, 
however, triggers a deterministic transition from q  =  q2 to the trivial solution q  =  0 that is 
also linearly stable. The critical nucleus is an x-dependent deterministic solution qc(x) of 
equation (159) which is linearly unstable under the dynamics of equation (158). The critical 
nucleus corresponds to a local maximum of free energy (161) [144]. A small perturbation 
around the critical nucleus drives the system either to q  =  0 or to q  =  q2. In a finite-size sys-
tem the critical nucleus depends on the system size L and corresponds to a phase trajectory 
inside the internal separatrix shown in figure 29(b) [78]. The critical nucleus exists only for 
sufficiently large systems, L  >  Lc, where the critical system size Lc can be obtained by lin-
earizing equation (159) around q  =  q2. At L � Lc the critical nucleus approaches the internal 
separatrix in figure 29(b). If f(q) is a cubic polynomial, the critical nucleus can be found ana-
lytically, otherwise it can be found numerically. Figure 30 shows the critical nuclei for two 
different values of L  >  Lc.

For extinction to occur a large fluctuation of the size of a stochastic population resid-
ing around q  =  q2 only needs to create the critical nucleus. The further population dynamics 
toward extinction proceed essentially deterministically. What happens at L � Lc, see fig-
ure 30(b), is intuitively clear. Once having passed the critical nucleus, the solution q(x, t) of 
equation (158) develops, on a fast time scale  ∼µ−1

0 , two outgoing deterministic ‘extinction 
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fronts’ that drive the whole population to extinction on a time scale  ∼L/(µ0D)1/2. As a result, 
the MTE is determined by the mean creation time of the critical nucleus. This quantity does 
not include an exponential dependence on the system size L (unless L is exponentially large in 
K [78]) and is therefore much shorter than the MTE in the absence of Allee effect.

For a very strong Allee effect—when the system is close to the saddle-node bifurcation, 
corresponding to the appearance of the stable fixed point q  =  q2 of the deterministic equa-
tion q̇ = µf (q)—the WKB formulation of the population extinction problem turns out to be 
completely integrable, similarly to the complete integrability of the WKB problem for popula-
tion explosion close to the saddle-node bifurcation, earlier studied in [60]. This integrability 
can be explained by establishing a direct mapping between this problem and the overdamped 
limit of the theory of homogeneous nucleation due to Langer [146]. We refer the reader to 
papers [60, 78] for details, derivations and additional examples.

Nucleation via fluctuations also plays a critical role in the formation of macroscopic 
clusters (for example, above the critical point in certain lattice gas models). This fundamental 
problem is of interest in several biological contexts such as quorum sensing and clustering 
of motile adhesive cancer cells [147]. In the latter case, clustering via nucleation can explain 
growth of recurrent tumors. Khain et  al [147] studied this problem numerically and via a 
WKB approximation to a phenomenological master equation.

10.  Large velocity fluctuations of population invasion fronts

Biological invasions is one of the key issues in contemporary ecology [148]. The term 
describes a broad variety of phenomena related to introduction and spread of non-native 
species in ecosystems. Biological invasions often have a dramatic negative impact on native 
eco-communities, and are considered as one of the main reasons for biodiversity loss in the 
world. They may also jeopardize agriculture and lead to economic losses. Mathematical mod-
eling plays an important role in the understanding of biological invasions [9, 149]. Here we 
will consider simple one-population invasion fronts that, at the level of deterministic theory, 
are described by a traveling front solution of a reaction–diffusion equation. When the demo-
graphic noise is taken into account, the reaction front position fluctuates. What is the probabil-
ity that the fluctuating reaction front moves slower or faster than its deterministic counterpart? 
The WKB approximation can be very useful in providing insightful answers. This theory 
assumes many particles in the transition region of the front. As it turns out, details crucially 
depend on whether the reaction front describes propagation into a state that is deterministi-
cally unstable or stable. We will only consider here fronts propagating into an unstable state, 
where the effects of noise are remarkably strong.

Figure 29.  Effective potential V(q) (a) and phase portrait (q, q′) (b) for steady-state 
solutions of equation  (158) for a strong Allee effect, V(0)  >  V(q2). Reprinted figure 
with permission from [78], copyright 2015 by the American Physical Society.
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A celebrated example of a reaction front propagating into an unstable state is provided by 
the Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equation [150],

∂tq = q − q2 + ∂2
x q,

� (164)
where q(x, t) is the particle density. This equation  describes invasion of an unstable state 
q(x → ∞, t) = 0 by a stable state q(x → −∞, t) = 1. The FKPP equation is a fundamental 
model in population biology and mathematical genetics [150], but it also appears in many 
other applications. Equation (164) has a family of traveling-front solutions (TFSs) parameter-
ized by their velocity c: q(x, t) = Q0,c(ξ), where ξ = x − ct . Q0,c(ξ) obeys the equation

Q′′
0,c + cQ′

0,c + Q0,c − Q2
0,c = 0.� (165)

and boundary conditions Q0,c(−∞) = 1 and Q0,c(∞) = 0. The invasion front can have any 
velocity from the interval c0 � c < ∞, where c0  =  2. It is known, however, that for sufficiently 
steep initial conditions the solution of the time-dependent equation (164) approaches at long 
times a limiting TFS, Q0,2, of equation (165) with the velocity c*  =  2 [150–152]. Importantly, 
the special velocity c0  =  2 is determined only by the dynamics of the leading edge of the 
front, where equation (164) can be linearized around q  =  0. That is, the full nonlinear front, 
described by equation (164), is ‘pulled’ by its leading edge, hence the term ‘pulled fronts’ 
[152], of which the FKPP equation (164) is the best known example.

The intrinsic (demographic) noise, unaccounted for by equation (164), causes deviations 
of the front position with time. These include a systematic front velocity shift and fluctuations 
that typically are diffusion-like. If N � 1 is the characteristic number of particles in the front 
region, the front velocity shift scales as (lnN)−2 [153–155], whereas the front diffusivity scales 
as (lnN)−3 [155–157]. The logarithmic N-dependencies are markedly different from the more 
expected 1/N dependencies of the same quantities for the fluctuating fronts propagating into 
locally stable states [79, 158–161]. This fact makes the pulled fronts much more interesting.

The starting point of the stochastic treatment of population invasion fronts can be the same 
as in the spatial extinction problem, see section 9. One starts from the exact master equation in 
the lattice formulation. Then, assuming a large N, one can apply a WKB ansatz directly to the 
time-dependent multivariate distribution of population sizes. Neglecting the second deriva-
tives of the action and assuming a fast diffusion in space, one again arrives at the continuous 
Hamilton’s equations (163) [78, 79]. Meerson and Sasorov [78] studied (negative) velocity 

Figure 30.  Linearly stable states q  =  q2 and q  =  0, linearly unstable state q  =  q1 and 
critical nucleus for a strong Allee effect and periodic boundary conditions. The system 
size is weakly (a) and strongly (b) supercritical. The thick curves show the critical 
nucleus. The arrows indicate transitions, driven by rare large fluctuations and leading 
to a quick population extinction. Reprinted figure with permission from [78], copyright 
2015 by the American Physical Society.
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fluctuations of a pulled front on the example of reversible reactions A � 2A and independent 
random walk. In this case the (properly rescaled) equations (163) become

∂tq = qe p − q2e−p + ∂2
x q − 2∂x (q∂xp) ,� (166)

∂tp = 1 − e p − 2q(e−p − 1)− ∂2
x p − (∂xp)2 .� (167)

The specifics of the problem of fluctuations of the front position are reflected in the bound-
ary conditions in space and in time [78, 81]. At x → −∞ there is a stationary distribution 
of the particle density, peaked at q  =  1. Therefore, the boundary conditions at x → −∞ are 
q(−∞, t) = 1 and p(−∞, t) = 0 which correspond to the fixed point (q  =  1, p  =  0) of the 
on-site Hamiltonian H0(q, p) = q(e p − 1) + q2(e−p − 1). The boundary condition at x → ∞ 
is q(∞, t) = 0. The momentum p can be unbounded at x = ∞, but it must be bounded at 
finite x [78]. The boundary conditions in time involve two kink-like profiles of q at t  =  0 and 
t = T � 1 which are at distance X � 1 apart (where X can be positive, negative or zero). The 
front velocity is defined as c  =  X/T. A natural constraint in the context of invasion is that the 
initial particle density is zero to the right of some finite point in space.

Equations (166) and (167) look simpler in the new variables Q  =  qe–p and P  =  ep  −  1. 
But a crucial simplification appears when one realizes that, except in narrow boundary layers 
in time at t  =  0 and t = T � 1, the optimal path of the system approaches a traveling-front 
solution (TFS), Q(x, t)  =  Q(x  −  ct) and P(x, t)  =  P(x  −  ct), of equations (166) and (167). As 
a result, these PDEs become ODEs. The probability density of observing the front velocity c 
is, in the leading order,

− lnP(X, T) = NT F(X/T) = NT F(c), |c| < 2.� (168)

The optimal TFS, and the large deviation function (or rescaled action) F(c),

F(c) =
∫ ∞

−∞
dξ

[
Q(ξ)− Q2(ξ)

]
P2(ξ),� (169)

can be easily found numerically [78]. Notice also, that the ODEs have an integral of motion 
that can be found explicitly [78]. Figure 31 shows the numerical solution for c  =  3/2. As one 
can see, for this unusually slow front the P-front is well ahead of the Q-front. Essentially, the 
P-front modifies the effective reaction rates so as to slow down the front in comparison to its 
deterministic counterpart at P  =  0. Figure 32(a) shows the numerically evaluated F(c), see 
equation (169), at different c.

One interesting regime where an analytic solution—by a matched asymptotic expansion—
can be obtained is c0 − c � 1 [78]. In this case the main contribution to the large deviation 
function comes from the leading edge of the front, ξ � 1, where Q � 1. As |P| ∼ 1 there, this 
theory must be nonlinear. On the other hand, |P| � 1 in the left region, whereas Q � 1 in the 
right region. An analytical theory is possible because there is a joint region, where the strong 
inequalities |P| � 1 and Q � 1 hold simultaneously. We refer the reader for details to [78]. 
Finally one obtains

F(c) � 0.0074 exp

(
− π√

2 − c

)
.� (170)

As a result,

lnP(X, T) � −0.0074 NT exp

(
− π√

2 − c

)
.� (171)
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As one can see, the negative tail of the front speed distribution around c0 is strongly non-
Gaussian, and rapidly falls as c goes down. It also strongly depends on N. The latter property 
reflects the fact that, in order to considerably slow down the invasion front, a multi-particle 
optimal fluctuation is required. Being a WKB asymptotic, equation (171) holds only when 
there are many particles at the leading edge of the front, where ξ � ξ0 � π/

√
2 − c. This 

condition leads to the strong inequality

c∗ − c � 2π2 ln−3 N,� (172)

where c∗ = 2 − π2 ln−2 N  describes the systematic correction to the front velocity, coming 
from the noise [153]. By putting c = c∗ − δc, where δc � ln−2 N , one can see that the linear 
dependence on N in equation  (171) cancels out, giving way to a much slower logarithmic 
dependence, compatible with a phenomenological theory of typical fluctuations of a pulled 
front’s position [157].

It was realized in [78] that the result (171) holds, up to a c-independent numerical coef-
ficient, for all pulled reaction fronts, where A → 2A is the only first-order birth process. It 
also holds, close to the transcritical bifurcation, for a whole class of reactions. The (properly 
rescaled) on-site Hamiltonian for this class of models, H0(Q, P)  =  QP(P  −  Q  +  1) [106], 
was discussed in sections 6.2 and 7.1.1. Fluctuations of the front velocity for this class of 
models were studied in [81]. In particular, the authors solved numerically the complete time-
dependent WKB equations—two coupled PDEs similar to equations (167). As they observed, 
the TFS is indeed the true optimal history of the system, except in the narrow boundary layers 
at t  =  0 and t = T � 1, and it yields the leading-order contribution to lnP  as described by 
the scaling relation (168).

Large positive deviations of the pulled front velocity have an entirely different nature. In 
this case the distribution P(X, T) is independent of N in the leading order of theory [162, 163]. 
The positive deviations are of a non-WKB character, as they are determined by only a few 
particles that run ahead of the front.

Figure 31.  Numerical Q(ξ) and P(ξ) profiles for c  =  1.5 obtained in [78]. Reprinted 
figure with permission from [80], copyright 2015 by the American Physical Society.
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11.  Summary and some open questions

We have reviewed recent progress in applying the WKB approximation to the study of large 
deviations in stochastic population dynamics. The WKB approximation yields a versatile and 
universal framework for analysis of large deviations. In many cases it enables one to deter-
mine the optimal path to the specified large deviation and to evaluate, analytically or numer
ically, the mean time to extinction/fixation/switching, and/or the corresponding probabilities. 
Different variants of the WKB approximation, developed by physicists, are steadily ‘invading’ 
communities of mathematical biologists, and this process is likely to continue.

There are still many unresolved questions. Here are some of them. It would be interesting 
to search for additional instances of time-scale separation in multi-population systems in order 
to have a better analytical insight. Large deviations on heterogeneous networks remain largely 
unexplored beyond the mean-field-like ‘annealed network’ assumption. In spatially-extended 
large-deviation problems, time-scale separation seems to be the only hope for analytical pro-
gress, except when the optimal path is describable in terms of traveling wave solutions of the 
WKB equations, and the problem simplifies dramatically. Finally, it would be very interest-
ing to investigate the effect of static disorder (‘good’ and ‘bad’ regions of space) on the large 
deviations in spatially-explicit populations.
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